python matplotlib二维地震数据画图

本文展示了使用Matplotlib库进行图像数据的预处理,包括原始数据、噪声数据、去噪后的数据以及局部相似性地图的可视化。通过seismic和jetcmap展示处理过程。
摘要由CSDN通过智能技术生成

效果图如上

附代码:

    
def show(x,y,x_,xx):
    import matplotlib.pyplot as plt
    fig = plt.figure(figsize=(10,8))
    #plt.colorbar(shrink= 0.8)
    plt.subplot(221)
    plt.imshow(x, cmap=plt.cm.seismic, vmin=-1, vmax=1)
    # plt.imshow(x, cmap=plt.cm.gray, vmin=-0.5, vmax=0.5)
    plt.title('Raw Data', fontsize=18)
    plt.xlabel('Channel',fontsize=16)
    plt.ylabel('Samples',fontsize=16)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.annotate('(a)', xy=(0, 0), xytext=(-60, -60), fontsize=16, fontweight='bold', va='top')
    plt.colorbar(shrink= 0.5)

    plt.subplot(222)   
    plt.imshow(y, cmap=plt.cm.seismic, vmin=-1, vmax=1)
    plt.title('Noisy Data',fontsize=18)
    plt.xlabel('Channel',fontsize=16)
    plt.ylabel('Samples',fontsize=16)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.annotate('(b)', xy=(0, 0), xytext=(-60, -60), fontsize=16, fontweight='bold', va='top')
    #plt.text(np.pi/2, -10, 'SNR=xx dB', fontsize=14,  horizontalalignment='center')
    plt.colorbar(shrink= 0.5)

    plt.subplot(223)   
    plt.imshow(x_, cmap=plt.cm.seismic,  vmin=-1, vmax=1)
    plt.title('Denoised Data',fontsize=18)
    plt.xlabel('Channel',fontsize=16)
    plt.ylabel('Samples',fontsize=16)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.annotate('(c)', xy=(0, 0), xytext=(-60, -60), fontsize=16, fontweight='bold', va='top')
    plt.colorbar(shrink= 0.5)
    
    plt.subplot(224)   
    #plt.imshow(xx, cmap=plt.cm.seismic,  vmin=-1, vmax=1)
    plt.imshow(xx,cmap='jet',clim=(0,1))
    plt.title('Local Similarity Map',fontsize=18)
    plt.xlabel('Channel',fontsize=16)
    plt.ylabel('Samples',fontsize=16)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.annotate('(d)', xy=(0, 0), xytext=(-60, -60), fontsize=16, fontweight='bold', va='top')
    #plt.text(np.pi/2, -10, 'SNR=xx dB', fontsize=14, horizontalalignment='center')
    #plt.annotate('(d)', xy=(-20, -20), xytext=(200, 200), fontsize=14, fontweight='bold', va='top')
    plt.colorbar(shrink= 0.5)
       
    plt.tight_layout() 
    plt.savefig('data2.png', dpi = 600) 
    plt.show()

def show(x,y,x_,xx):
    import matplotlib.pyplot as plt
    fig = plt.figure(figsize=(8,8))
    #plt.colorbar(shrink= 0.8)
    plt.subplot(221)
    plt.imshow(x, cmap=plt.cm.seismic, vmin=-2, vmax=2)
    # plt.imshow(x, cmap=plt.cm.gray, vmin=-0.5, vmax=0.5)
    plt.title('Clean Data', fontsize=16)
    plt.xlabel('Trace',fontsize=12)
    plt.ylabel('Samples',fontsize=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.annotate('(a)', xy=(0, 0), xytext=(-80, -60), fontsize=16, fontweight='bold', va='top')
    plt.colorbar(shrink= 0.5)

    plt.subplot(222)   
    plt.imshow(y, cmap=plt.cm.seismic, vmin=-2, vmax=2)
    plt.title('Noisy Data',fontsize=16)
    plt.xlabel('Trace',fontsize=12)
    plt.ylabel('Samples',fontsize=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.annotate('(b)', xy=(0, 0), xytext=(-80, -60), fontsize=16, fontweight='bold', va='top')
    #plt.text(np.pi/2, -10, 'SNR=xx dB', fontsize=14,  horizontalalignment='center')
    plt.colorbar(shrink= 0.5)

    plt.subplot(223)   
    plt.imshow(x_, cmap=plt.cm.seismic,  vmin=-2, vmax=2)
    plt.title('Denoised Data',fontsize=16)
    plt.xlabel('Trace',fontsize=12)
    plt.ylabel('Samples',fontsize=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.annotate('(c)', xy=(0, 0), xytext=(-80, -60), fontsize=16, fontweight='bold', va='top')
    plt.colorbar(shrink= 0.5)
    
    plt.subplot(224)   
    plt.imshow(xx, cmap=plt.cm.seismic,  vmin=-2, vmax=2)
    #plt.imshow(xx,cmap='jet',clim=(0,1))
    plt.title('Removed Noise',fontsize=16)
    plt.xlabel('Trace',fontsize=12)
    plt.ylabel('Samples',fontsize=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.annotate('(d)', xy=(0, 0), xytext=(-90, -60), fontsize=16, fontweight='bold', va='top')
    #plt.text(np.pi/2, -10, 'SNR=xx dB', fontsize=14, horizontalalignment='center')
    #plt.annotate('(d)', xy=(-20, -20), xytext=(200, 200), fontsize=14, fontweight='bold', va='top')
    plt.colorbar(shrink= 0.5)
       
    plt.tight_layout() 
    plt.savefig('synthetic_2.png', dpi = 600) 
    plt.show()

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

某崔同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值