动态规划法:
它与分治算法的思想相同,但是不同的点在于:
分治算法是,将大问题,分解成小问题,小问题解决了,合并解决大问题。
动态规划是,将大问题分解成小问题,将小问题解决后,将小问题的解,放到一个容器中(比如数组),这样求解大问题的时候,就可以直接用,避免重复计算。
例题:如果一个人一次可以上 1 级台阶,也可以一次上 2 级台阶。求这个人走一个 n 级台阶总共有多少种走法?
解决方法:
不同于分治算法,使用动态规划,将最小的台阶数放到数组中,之后求高级台阶时,直接调用就好。
#include<stdio.h>
#include<Windows.h>
int Walkcount(int n);
int main() {
int n;
printf("请输入台阶数:");
scanf_s("%d",&n);
printf("台阶个数为%d个\n",Walkcount(n));
system("pause");
return 0;
}
int Walkcount(int n){
int num;
if (n <= 0) {
return 0;
}else if(n == 1){
return 1;
}else if (n == 2) {
return 2;
}
int* arry = new int[n+1];
arry[0] = 0;
arry[1] = 1;
arry[2] = 2;
for (int i = 3; i <= n;i++) {
arry[i] = arry[i - 1] + arry[i - 2];
}
num = arry[n];
delete arry;
return num;
}
**
什么时候要用动态规划? 如果要求一个问题的最优解(通常是最大值或者最小值),而且该问题能够分解成若干个子问题,
并且小问题之间也存在重叠的子问题,则考虑采用动态规划
**