1算法简介
人工生态系统优化(artificial ecosystem-based optimization,AEO)算法是Zhao W等人于2019年通过模拟地球生态系统中能量流动而提出一种新型元启发式优化算法,该算法通过生产算子、消费算法和分解算子对生态系统中的生产、消费和分解行为进行模拟来达到求解优化问题的目的。生产算子旨在加强AEO算法勘探和开发之间的平衡能力;消费算子用于改进AEO算法的探索能力;分解算子旨在提升AEO算法的开发性能。与传统群智能算法相比,AEO算法不但实现简单,除群体规模和最大迭代次数外,无需调整其他任何参数,且具有较好的寻优精度和全局搜索能力。AEO算法遵行以下3个准则:(1)生态系统作为种群包括三种生物:生产者、消费者和分解者,且种群中分别只有一个个体作为生产者和分解者,其他个体作为消费者。(2)每个个体都具有相同的概率被选择为食肉动物,食草动物或杂食动物。(3)群体中每个个体的能量水平通过适应度值进行评价,适应度值按降序排序,适应度值越大表示最小化问题的能量水平越高。AEO算法数学描述参见文献[1-2]。
2代码说明
代码说明:本代码利用AEO算法优化BP神经网络权值和阈值,建立AEO-BP预测模型,利用经小波包分解的云南省某水文站月径流数据分量对模型进行实验(前542组数据作为训练样本,后100组数据作为预测样本),预测结果与基本BP模型作对比。
AEO-BP模型参数设置:AEO最大迭代次数为100,种群规模50,其他参数采用AEO默认值;BP隐含层节点数设置为10,隐含层传递函数、输出层传递函数、训练函数分别采用tansig、purelin、traingdx,设定期望误差为0.0001,最大训练轮回均设置为1000次,数据采用[-1,1]进行归一化处理。
BP模型参数:为在公平条件下对比验证AEO-BP模型,BP参数设置同AEO-BP模型。
预测结果:AEO-BP模型平均相对百分比误差(MAPE)3.65%;BP模型平均相对百分比误差(MAPE)13.7%,精度提高73.4%,AEO-BP模型具有较好的预测精度,见图2、图3。
参考文献
[1]崔东文,包艳飞.基于人工生态系统优化算法的组合生长需水预测模型[J].水资源保护,2020,36(6):122-130.
[2]胡顺强, 崔东文.基于AEO-Schumacher-Usher模型的径流及地下水位预测[J].中国农村水利水电 2020, (11) 28-34.
上述代码下载地址
链接:https://mianbaoduo.com/o/cdw_cw