论文笔记——Post-Training Attribute Unlearning in Recommender Systems

Post-Training Attribute Unlearning in Recommender Systems[J].

arXiv preprint arXiv:2403.06737, 2024.Chen C, Zhang Y, Li Y, et al.

目录

Post-Training Attribute Unlearning in Recommender Systems[J].

摘要:

问题分析

方法

可区分性损失

正则化损失

实验


摘要:

随着推荐系统中隐私问题的日益凸显,推荐忘却学习受到越来越多的关注。现有的研究主要使用训练数据,即模型输入,作为忘却学习的目标。然而,攻击者即使在训练过程中没有明确遇到,也可以从模型中提取私有信息。我们将这种看不见的信息命名为属性,并将其作为忘却学习目标。为了保护用户的敏感属性,Attribute忘却学习( AU )旨在使目标属性不可区分。在本文中,我们关注一种严格但实用的AU设置,即训练后属性忘却学习( Post-training Attribute Unlearning,PoT-AU ),其中忘却学习只能在推荐模型训练完成后才能执行。针对推荐系统中的PoT - AU问题,提出了一种双成分损失函数。第一个组件是可区分性损失,其中我们设计了一种基于分布的度量,使属性标签与攻击者不可区分。我们进一步将该度量扩展到处理具有高效计算开销的多类属性情况。第二个部分是正则化损失,在这里,我们探索了一种函数空间度量,与参数空间正则化相比,有效地保持了推荐性能。我们使用随机梯度下降算法来优化我们提出的损失。在四个真实数据集上的大量实验证明了我们提出的方法的有效性。

问题分析

在推荐系统中,PoT - AU有两个目标。主要目标( 目标1 )是使目标属性对推理攻击不可区分,或更直接地降低攻击性能。另一个目标(目标 2 )是保持推荐性能

为了实现Po T - AU问题中的上述两个目标,Li等[ 43 ]将其视为一个关于用户嵌入的优化问题。他们随后设计了一个由区分性损失和正则化损失组成的双分量损失函数。虽然该方法对于PoTAU问题是有效的,但是该方法有两个缺点。

(1)首先,可区分性损失被设计为最小化两组用户嵌入之间的距离,这导致在标签类别数较多的多类属性情况下具有显著的计算复杂度

(2)其次,我们观察到,当进行属性去学习时,推荐的性能会下降,特别是在多类场景中。这种性能的下降可以归因于所提出的参数空间正则化损失和预期的函数空间正则化之间的差异

通过分析上述两个不足,我们确定了PoT - AU面临的两个关键挑战,

(1)如何降低多类属性Unlearning的计算复杂度? 

(2)如何在保持推荐性能的同时实现属性Unlearning?

方法

 为了应对这些挑战,该文章进一步修改了区分性损失和正则化损失的设计。

(1)建立了一个锚分布,并最小化其他分布与它之间的距离。该方法将计算复杂度从O ( T2 )降低到O ( T ),其中T是属性类别数,如当T = 2时,女性和男性。

(2)在函数空间中提出了一个无数据的正则化损失lr,它直接对模型的函数进行正则化来保持推荐性能。

可区分性损失

1、可区分性损失用lu表示。分布之间的可区分性为两个分布之间的距离(D2D loss)。

2、区分性度量

(1)二元标签从分布的角度定义:分布到分布的损失(D2D)——>多标签场景:MMD

(2)二元标签场景(将具有相同属性标签的用户嵌入看做一个分布)

MMD :

μ表示分布P的核平均嵌入

给定n个来自θ 1 ~ P1的样本和m个来自θ 2 ~ P2的样本,得到

其中κ ( · , ·)是核函数,即高斯核函数

 可区分性损失lu:

(3)多标签场景

T分布:标签数量较多的多标签场景下,最小化每一对( P1、P2)的l u,D会变得计算困难,即T,计算复杂度增加到O ( T 2 )。

引入了锚点分布来降低复杂度。给定T分布,锚点分布被定义为一个分布P *,它最小化锚点分布与前述T分布之间的加权距离的平均和。这个目标等价于识别几个概率测度之间的插值,也称为重心估计。

 使用高斯核的MMD距离来估计重心。

这相当于在H中寻找一个最优的核均值嵌入μ *,使得最小化

上式是关于μ的强凸二次函数,其最小值由一阶条件给出:

可以通过加权插值得到锚点分布

采用锚分布,只需要计算锚分布和T分布之间的MMD距离,就可以将lu的计算复杂度从O ( T 2 )降低到O ( T )

正则化损失

1、引入一个无数据的正则化损失,即lr。

2、参数空间的正则化:

l2范数:

3、函数空间的正则化:

只对每个用户的top - k推荐项目进行正则化。将排序列表的正则化表示为一个排序学习任务,并引入一个无数据的排序正则化损失,记为lr。

目标:最小化Unlearning前后推荐列表中top - k项顺序的差异。

(1)使用成对损失对原始top - k项目列表进行正则化:

其中,vi表示未学习前的前k个列表中的第i个项目,[ svi表示Unlearning后第vi个项目的得分。我们还将不在原始top - k列表中的k个项目采样为负样本,记为negi。λ 1和λ 2是两个边缘值,被视为超参数。这个损失函数是在Hinge损失的基础上由两个成对的项组成[ 21 ]。第一项旨在最大化正项在Unlearning前按照与前k个列表相同的顺序进行排序的概率,第二项旨在提高前k个列表中项的得分。

(2)缺点lpr只考虑了物品在前k个位置的相对顺序,而忽略了它们之间的绝对差异。由于λ 1和λ 2是固定的,因此lpr可能会放大相似项目之间的评分差异,减小不相似项目之间的评分差异

改进:提出了λ的自适应权重,即假设项目对( vi , vi + 1)的间隔权重应该与vi和vi + 1之间的相似度负相关:

其中sim表示项目嵌入之间的余弦相似度。使用一个参数化的几何分布来对间隔进行加权:

式中:τ表示控制分布尖锐程度的超参数。最后得到:

4、参数空间和函数空间的比较。

使用排序有偏重叠( Rank Biased Overlap,RBO ) 来度量top @ 10推荐项目列表的相似度,它反映了函数空间上的差异。

实验

1、4个基准数据集:(既包含输入数据,即用户-项目交互,也包含用户属性,即性别、年龄和国家。)MovieLens 100K ( ML-100K )、MovieLens 1M ( ML-1M )、KuaiSAR-small、LFM-2B2

2、评价指标:

(1)属性Unlearning有效性:微F1得分( F1 )和平衡准确率( BAcc )来评估之后的属性推断攻击的性能。较低的F1分数和BAccs表明较好的未学习有效性。

(2)推荐有效性:使用排名K的命中率( HR @ K )和排名K的归一化折扣累计增益( NDCG @ K )作为推荐性能的衡量指标。HR @ K衡量测试项目是否出现在前K名单中,而NDCG @ K是位置感知的排序指标,对排名较高的的命中数赋予较高的分数。

(3)推荐模型:神经矩阵分解( Neural Matrix Factorization,NMF )是基于矩阵分解的代表性模型之一。 轻图卷积网络( Light Graph Convolution Network,Light GCN )是目前最先进的协同过滤模型,通过简化图卷积网络来提高推荐性能。

(4)Unlearning方法:Original、Retrain ( InT-AU )、Adv-InT ( InT-AU )、D2D-PR ( Po T-AU )、D2D-FR ( Po T-AU )

3、参数敏感性:在不同的超参数,即权衡系数α和lr的秩列表长度k下,该文章方法的性能波动。

 4、通过在以年龄为目标属性的ML - 1M数据集上进行Unlearning,比较了lr和l2在保持推荐性能上的差异.

5、不同攻击者类型下的Unlearning性能:设计了几种不同类型的攻击模型,即决策树( Decision Tree,DT )、支持向量机( Support Vector Machine,SVC )、朴素贝叶斯( Naive Bayes,NB )和k近邻( k-Nearest Neighbors,KNN )。

  • 18
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值