基于图神经网络的对抗攻击 Nettack: Adversarial Attacks on Neural Networks for Graph Data

研究意义

随着GNN的应用越来越广,在安全非常重要的应用中应用GNN,存在漏洞可能是非常严重的。
比如说金融系统和风险管理,在信用评分系统中,欺诈者可以伪造与几个高信用客户的联系,以逃避欺诈检测模型;或者垃圾邮件发送者可以轻松地创建虚假的关注者,向社交网络添加错误的信息,以增加推荐和传播重大新闻的机会,或者操控在线评论和产品网站。
因此,我们需要研究对图神经网络的攻击和防御,在我们真正部署一个模型前,应该确认一下这个模型在面对对抗攻击的时候足够健壮?

参考资料

https://zhuanlan.zhihu.com/p/88934914
https://blog.csdn.net/b224618/article/details/82025371
https://blog.csdn.net/travalscx/article/details/84677646
https://www.in.tum.de/en/daml/all-news/news-single-view-en/article/best-paper-award-at-kdd-2018/

  • 项目:https://www.in.tum.de/daml/nettack/
  • 项目:https://www.in.tum.de/en/daml/research/nettack/
  • 代码:https://github.com/danielzuegner/nettack
  • poster:https://www.in.tum.de/fileadmin/w00bws/daml/nettack/kdd_poster.pdf
  • paper:https://arxiv.org/abs/1805.07984
  • talk ppt:https://www.in.tum.de/fileadmin/w00bws/daml/nettack/kdd_talk.pdf

介绍

来自KDD 2018,最佳论文。图神经网络上的对抗攻击的开山之作。

场景

在这里插入图片描述
备注:
考虑一个简单且经典的场景,图上的结点分类任务。
给定一张图,图上部分结点有标签,通过训练一个深度学习模型来预测图上结点的分类。

一方面预测不基于单独的示例而是联合了图上很多实

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏打呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值