最近有个热搜,简单来说就是一名男子发现自己抚育了很多年的3个孩子都是非亲生的,去年可能还生了第4个还也非亲生,案件的始末不是本文的重点,建议大家可以去百度了解下相关内容。
我作为一名女性,对于案件中的女主人也是不敢苟同,所以由此想到了一个商业问题。
婚恋机构由来已久,最为被人熟知的可能是世纪佳缘,这些都是显性的有组织的婚恋机构,但是事实上中国最早的婚恋“组织”是古代的媒婆,以及现在的相亲介绍人,他们每一个作为嫁接男、女双方的沟通桥梁,其实都承担着很大的就是人群过滤、对接的责任。
联系到该热搜案件,我觉得最大的一个问题是女方的婚姻忠诚度及感情上的人品,商业的思考角度无法考虑太多感性问题,理性的角度是男方的最大难题是孩子非亲生,所以对应到商业性问题是上述的婚恋机构组织、个人组织,能不能帮助男、女双方当事人来规避忠诚度引发的问题,因为他们所掌握的信息是最全面的,从另一个角度说接触的足够多就是更了解市场。
商业有难题,为了决策不拍脑袋,我倾向于用大数据的思维及应用来解决问题。
所以有没有基于婚姻忠诚度衍生出的婚恋数据模型,来帮助步入婚姻的双方来判断对方的婚姻忠诚度?
虽然婚恋大数据也搞了很久,特别是人群筛选,会给相亲候选人加很多条件,但是这个变动性比较强,因为比如你一开始希望对方颜值在7分,但是碰到一个4分的人相处一阵子觉得很舒服,此时颜值就不重要了,所以这块的大数据应用个人觉得不太稳定。
但是婚姻忠诚度是针对无论是否因为感情步入婚姻的所有男、女双方的共同需求,感情再好,如果有一方没有忠诚度,其实最后都会分离,所以这个就变成了一个社会问题,婚姻忠诚度高可以让家庭更稳固,这样社会就会更具有安定的条件。
所以我们探索下婚姻忠诚度高的数据模型应该怎么设计?
1、 模型面向对象:男、女
2、 模型设计应区分性别,因为会导致男性和女性出现忠诚度不够的影响因素是不同的,而想丢来说男性比女性更容易出现忠诚度问题。
3、 可以分别针对男、女性别列车尽可能多的影响因素,然后收集市场数据,通过算法识别影响因素较高的几个因素,固定成模型后,后期使用时直接采集男、女方信息输入进模型出结果。
我们以女性为例,做个预设:
1、 感情观:比如女方对于感情是否需要从一而终的看法
2、 原生家庭情况:缺爱的人可能会是一个比较高的影响因素
3、 过往的恋爱次数:个人觉得次数较多,对于是否执着于一个人可能比较淡薄
4、 婚前的空窗期长短:女性比较感性,对于前段感情多数比较执着,如果分手时间短马上结婚也是个高影响因素
5、 ……
这里模型维度设置不宜写太多,因为我目前没有调研数据,写的维度容易引发争议,但是思路是这个思路,婚恋数据市场建议比较权威的机构来做,因为家庭不稳定引发的是社会问题,权威的机构也会更客观,模型维度设置需要调研数据,不能拍脑袋。
我在这里只是做个解决商业问题的思维展示,其实我们每个人每天都在给各行各业贡献N多信息,在需要解决商业问题的时候,我们是可以借助大数据应用的能力来辅助决策,比如忠诚度模型真的出了,如果模型结果分值太低的人可以直接不考虑,分值尚可的人可以结合具体情况分析。
数据到底如何发挥价值?数据到底怎么用?这是个社会难题,欢迎大家关注公众号:知幽科技,后续商业应用专栏会持续更新。
好文推荐:
合集: 一文了解企业战略、数据运营、数据分析、BI、数据治理
企业战略(顶层设计)
数据运营(数据价值落地)
数据分析
数据治理(企业数据基建)
BI&数据可视化(企业数据应用基建)
数字化转型