论文解读
METEO-DLNet: Quantitative Precipitation Nowcasting Net Based on Meteorological Features and Deep Learning
1. 背景
降水预测,特别是短期降水预测(nowcasting)的重要性
雷达回波外推法(radar echo extrapolation)在短期降水方面的实用性
深度学习算法在处理雷达回波数据(radar echo images)时的优势
2. 模型概况
雷达回波图像数据及下采样(downsample)
基于Meteo-LSTM的编码-解码结构(encoding-decoding structure)
基于不同分辨率雷达回波图像预测结果的多尺度融合(multiscale fusion)
3. 问题定义
X t ∈ R P × H × W X_t\in\mathbb{R}^{\text{P}\times\text{H}\times\text{W}} Xt∈RP×H×W: 雷达回波图像,即时间 t \text{t} t时,局部网格点区域 H × W \text{H}\times\text{W} H×W的 P \text{P} P个测量信息
X = { X t − n , X t − n + 1 , … , X t } X=\{X_{t-n},X_{t-n+1},\ldots ,X_{t}\} X={Xt−n,Xt−n+1,…,Xt}: 已知的从 t − n t-n t−n到 t t t时刻的雷达回波图像
Y = { Y t − n , Y t − n + 1 , … , Y t } {Y}=\left\{{Y}_{t-n},{Y}_{t-n+1},\ldots,{Y}_{t}\right\} Y={Yt−n,Yt−n+1,…,Yt}: 从 t + 1 t+1 t+1到 t + m t+m t+m时刻真实的雷达回波图像
Y ^ = { Y ^ t + 1 , Y ^ t + 2 , … , Y ^ t + m } \hat{Y}=\left\{\hat{Y}_{t+1},\hat{Y}_{t+2},\ldots,\hat{Y}_{t+m}\right\} Y^={Y^t+1,Y^t+2,…,Y^t+m}: 从 t + 1 t+1 t+1到 t + m t+m t+m时刻预测的雷达回波图像
得到预测模型: Y ^ = Γ ( X , Y ) \hat{Y}=\Gamma(X,Y) Y^=Γ(X,Y)
目的: Y ^ \hat{Y} Y^尽可能逼近 Y Y Y
4. 模型流程
本文以10帧连续雷达回波图像作为输入,以接下来的10帧预测图像作为输出,分辨率为: 128 × 128 128\times 128 128×128
4.1 数据
对原始输入图像进行下采样,得到分辨率为 64 × 64 64\times 64 64×64的低分辨率图像。
两组数据:
高分辨率图像(fine-scale): 原始输入图像,获取更多局部信息
低分辨率图像(coarse-scale): 下采样之后的图像,获取全局信息
4.2 Embedding
两组数据的通道数(channels)从1升至64
4.3 编码-解码结构

使用了三层Meteo-LSTM作为编码-解码结构
4.3.1 LSTM





4.3.2 Meteo-LSTM

作用: 获取时间(temporal)和空间(spatial)信息
4.3.2.1 Spatial Attention Module(SA)


D L t k DL_t^k DLtk: 第 k k k层Meteo-LSTM在时间 t t t的空间特征信息(spatial feature storage/memory)
4.3.2.2 Differential Attention Module(DA)


D S t k DS_t^k DStk: 第 k k k层Meteo-LSTM在时间 t t t的时间特征信息(temporal feature storage/memory)
4.3.2.3 特征融合(feature fusion)
将Spatial Attention Module(SA)获取的空间信息 D L t k DL_t^k DLtk与Differential Attention Module(DA)获取的时间信息 D S t k DS_t^k DStk融合
o = σ ( W o x ∗ X t + W o h ∗ H t − 1 k + W o c ∗ C t k + W o m ∗ M t k + W o d s ∗ D S t k + W o d l ∗ D L t k ) H t k = o ∘ tanh ( W 1 × 1 ∗ [ C t k , M t k , D S t k , D L t k ] ) \begin{gathered}\begin{aligned}o&=\sigma\Big(W_{ox}*X_t+W_{oh}*H_{t-1}^k+W_{oc}*C_t^k+W_{om}*M_t^k+W_{ods}*DS_t^k+W_{odl}*DL_t^k\Big) \\H_t^k&=o\circ\tanh\Big(W_{1\times1}*\Big[C_t^k,M_t^k,DS_t^k,DL_t^k\Big]\Big)\end{aligned}\end{gathered} oHtk=σ(Wox∗Xt+Woh∗Ht−1k+Woc∗Ctk+Wom∗Mtk+Wods∗DStk+Wodl∗DLtk)=o∘tanh(W1×1∗[Ctk,Mtk,DStk,DLtk])
H t k H_t^k Htk: 第 k k k层Meteo-LSTM在时间 t t t的隐藏状态(hidden state)
4.4 融合机制(Fusion Mechanism)

得到两组不同尺度的预测图像, X l X_l Xl(低分辨率预测图像)和 X h X_h Xh(低分辨率预测图像)。
4.4.1 Self- Attention
Z l = so f t m a x ( ( W l q ∗ X l ) ⋅ ( W l k ∗ X l ) ⊤ ) ⋅ ( W l v ∗ X l ) Z h = so f t m a x ( ( W l q ∗ X l ) ⋅ ( W h k ∗ X h ) ⊤ ) ⋅ ( W h v ∗ X h ) \begin{aligned}Z_l&=\text{so}ftmax\left(\left(W_{lq}*X_l\right)\cdot\left(W_{lk}*X_l\right)^\top\right)\cdot\left(W_{lv}*X_l\right)\\Z_h&=\text{so}ftmax\left(\left(W_{lq}*X_l\right)\cdot\left(W_{hk}*X_h\right)^\top\right)\cdot\left(W_{hv}*X_h\right)\end{aligned} ZlZh=softmax((Wlq∗Xl)⋅(Wlk∗Xl)⊤)⋅(Wlv∗Xl)=softmax((Wlq∗Xl)⋅(Whk∗Xh)⊤)⋅(Whv∗Xh)
其中,高分辨率图像共享低分辨率图像的Query,让低分辨率图像得到的全局信息指导高分辨率图像得到的局部信息。
4.4.2 Gating Mechanisms
Z m = ( W m ∗ [ Z l , Z h ] ) i = σ ( W i , z ∗ Z m + W i , x l ∗ X l ) g = tanh ( W g , z ∗ Z m + W g , x l ∗ X l ) H = ( 1 − i ) ∘ X h + i ∘ g Z_{m}=(W_{m}*[Z_{l},Z_{h}]) \\ i=\sigma(W_{i,z}*Z_m+W_{i,xl}*X_l) \\ g=\tanh\Bigl(W_{g,z}*Z_{m}+W_{g,xl}*X_{l}\Bigr) \\ H=(1-i)\circ X_h+i\circ g Zm=(Wm∗[Zl,Zh])i=σ(Wi,z∗Zm+Wi,xl∗Xl)g=tanh(Wg,z∗Zm+Wg,xl∗Xl)H=(1−i)∘Xh+i∘g
5. 实验
5.1 数据集
选择了法国西北部 550 k m × 550 k m 550km \times 550km 550km×550km区域从2016年到2018年的数据,数据包括: 降雨子集(subsets of rainfall)、降雨雷达数据质量(radar data quality)和雷达反射率(radar reflectivity);每隔15分钟选择一张雷达回波图像,一个样本包含20张雷达回波图像,前10张用作输入,后10张用作输出。
雷达空间分辨率为 0.0 1 o 0.01^o 0.01o
雷达反射率作为模型的训练集和测试集,训练集:测试集:验证集 = 8:1:1(4000:500:500)
基于降雨雷达数据质量,排除了累积降雨数据集中质量较差的数据
5.2 损失函数
基于 L 1 和 L 2 L_1和L_2 L1和L2正则的损失函数: l o s s = 1 n ∑ t = 1 n ( ∣ E t − E ^ t ∣ + ∣ E t − E ^ t ∣ 2 ) loss=\frac1n\sum_{t=1}^n\left(\left|E_t-\hat{E}_t\right|+\left|E_t-\hat{E}_t\right|^2\right) loss=n1∑t=1n( Et−E^t + Et−E^t 2),其中
n表示通过编码-解码之后的输出图像的数量,易知 n = 19 n=19 n=19; E t E_t Et表示真实图像, E ^ t \hat{E}_t E^t表示预测图像。
5.3 结果分析
5.3.1 像素值与雷达回波反射率强度转换
P = 255 × d B Z 60 P=255\times\frac{\mathrm{dBZ}}{60} P=255×60dBZ, P : 0 − 255 P{:0-255} P:0−255
5.3.2 Z-R关系
雷达回波反射率强度与降水强度值之间的转换
d B Z = 10 × lg ( 200 × R 1.6 ) \mathrm{dBZ}=10\times\lg\left(200\times R^{1.6}\right) dBZ=10×lg(200×R1.6)
5.3.3 评价指标
计算不同降水阈值 R = 0.5 , 2 , 5 , a n d 10 \mathbb{R}=0.5,2,5,\mathrm{and~}10 R=0.5,2,5,and 10下的预测降水强度和真实真实降水强度之间的critial success index( CSI \text{CSI} CSI),和Heidke skill score( HSS \text{HSS} HSS)(与预测准确性相关的两个指标),其中:
C S I = T P T P + F N + F P , H S S = T P × T N − F N × F P ( T P + F N ) ( F N + T N ) + ( T P + F P ) ( F P + T N ) \mathrm{CSI}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}+\mathrm{FP}},\\ \mathrm{HSS}=\frac{\mathrm{TP}\times\mathrm{TN}-\mathrm{FN}\times\mathrm{FP}}{(\mathrm{TP}+\mathrm{FN})(\mathrm{FN}+\mathrm{TN})+(\mathrm{TP}+\mathrm{FP})(\mathrm{FP}+\mathrm{TN})} CSI=TP+FN+FPTP,HSS=(TP+FN)(FN+TN)+(TP+FP)(FP+TN)TP×TN−FN×FP

图像相似性指标 S S I M SSIM SSIM: S S I M ( x , y ) = ( 2 μ x μ y + C 1 ) ( 2 σ x y + C 2 ) ( μ x 2 + μ y 2 + C 1 ) ( σ x 2 + σ y 2 + C 2 ) SSIM(x,y)=\frac{\left(2\mu_x\mu_y+C_1\right)\left(2\sigma_{xy}+C_2\right)}{\left(\mu_x^2+\mu_y^2+C_1\right)\left(\sigma_x^2+\sigma_y^2+C_2\right)} SSIM(x,y)=(μx2+μy2+C1)(σx2+σy2+C2)(2μxμy+C1)(2σxy+C2)
三个指标都是越大越大。
5.3.4 可视化
强降水预测能力

5.3.5 对比实验
5.3.5.1 DA和DS的有效性
