【Datawhale组队学习】机器学习数学基础 - 函数极限与连续性【Task 01】

极限的分类

极限主要分为两类:

  • 数列极限: n → ∞ n \rightarrow \infty n
  • 函数极限: x → ∞ x \rightarrow \infty x

极限的定义

有一种定义:

x ∈ [ a , ∞ ) x \in [a,\infty) x[a,) lim ⁡ x → ∞ f ( x ) = A \lim_{x \rightarrow \infty} f(x) = A limxf(x)=A

等价于

对任意的 ϵ > 0 \epsilon>0 ϵ>0,存在 M ≥ a M\ge a Ma,使得当 x > M x>M x>M时,有 ∣ f ( x ) − A ∣ < ϵ |f(x) - A|< \epsilon f(x)A<ϵ

在很远很远的地方,总会存在某个M,使得f(x)的值特别接近A,但是永远不等于A。

还有一种定义是:

x ∈ [ a , ∞ ) x \in [a,\infty) x[a,) lim ⁡ x → x 0 f ( x ) = A \lim_{x \rightarrow x_0} f(x) = A limxx0f(x)=A

等价于

对任意的 ϵ > 0 \epsilon > 0 ϵ>0,存在 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ,有 ∣ f ( x ) − A ∣ < ϵ |f(x) - A|<\epsilon f(x)A<ϵ

在非常接近 x 0 x_0 x0的地方,存在某个值的邻域使得f(x)的值非常接近于A,但是无法到达A

极限的性质

主要性质:

  1. 极限是常数: lim ⁡ f ( x ) = A \lim f(x) = A limf(x)=A

  2. 唯一性:极限是唯一的,即左极限=右极限

  3. 局部有界性:存在最大值或最小值

    所谓局部,就是在函数的部分区域满足该性质,而不是整个函数的整体。

  4. 局部保号性:若 lim ⁡ x → x 0 f ( x ) = A > 0 \lim_{x\rightarrow x_0} f(x) = A > 0 limxx0f(x)=A>0,那么,存在 x ∈ u 0 ( x , δ ) x \in u^0(x,\delta) xu0(x,δ)(x的邻域内),有f(x)>0。

  5. 局部保不等式性:若存在 f ( x ) ≤ g ( x ) f(x) \le g(x) f(x)g(x),那么,在 x ∈ u 0 ( x , δ ) x \in u^0(x,\delta) xu0(x,δ)内,有 lim ⁡ x → x 0 f ( x ) ≤ lim ⁡ x → x 0 g ( x ) \lim_{x \rightarrow x_0}f(x) \le \lim_{x \rightarrow x_0}g(x) limxx0f(x)limxx0g(x)

  6. 迫敛性(夹逼法则):

    x ∈ u 0 ( x , δ ) x \in u^0(x,\delta) xu0(x,δ)内,有 f ( x ) ≤ h ( x ) ≤ g ( x ) f(x) \le h(x) \le g(x) f(x)h(x)g(x),并且 lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = A \lim_{x \rightarrow x_0}f(x) = \lim_{x \rightarrow x_0}g(x) = A limxx0f(x)=limxx0g(x)=A

    那么可以推出 lim ⁡ x → x 0 h ( x ) = A \lim_{x \rightarrow x_0}h(x) = A limxx0h(x)=A

计算函数极限

主要方法:

  1. 等价无穷小(记,巧妙)

  2. 洛必达(最常用)

  3. 泰勒公式(疑难杂症)

    求和极限主要是利用定积分和级数,后面再整理。

主要的的形式有七种未定式,通常的处理手段如下:

  1. 化简:

    • 利用等价无穷小替换。
    • 恒等变形:换元、 u v = e v ln ⁡ u u^v = e^{v \ln u} uv=evlnu、公式、中值定理
    • 提出因式
  2. 洛必达法则:一时洛,一时爽,一直洛,一直爽!

    需要保证求导的对象必须可导!!!

  3. 泰勒公式:遇上难题可以考虑一下,一般都能解决

    公式比较多,发现几个小规律

    • 非奇偶函数,写出所有的次项
    • 偶函数仅包含偶次项
    • 奇函数仅包含奇次项

    至于正负只能自己判断

  4. 无穷小比阶:
    lim ⁡ f ( x ) g ( x ) = 0 0 { 0 f是g的高阶无穷小 c ≠ 0 f是g的同阶无穷小 ∞ f是g的低阶无穷小 \lim \frac{f(x)}{g(x)} \stackrel{\frac{0}{0}}{=} \begin{cases} 0 & \text{f是g的高阶无穷小} \\ c\neq 0 & \text{f是g的同阶无穷小} \\ \infty & \text{f是g的低阶无穷小} \end{cases} limg(x)f(x)=000c=0fg的高阶无穷小fg的同阶无穷小fg的低阶无穷小


2021年8月21日根据 Task02更新

函数连续性

连续的定义:

定义f(x)在 x 0 x_0 x0的的邻域内手链,且有 lim ⁡ x → ∞ f ( x ) = f ( x 0 ) \lim_{x \rightarrow \infty} f(x) = f(x_0) limxf(x)=f(x0),则称f(x)在 x = x 0 x = x_0 x=x0处连续。

间断点的分类:

  1. 第一类间断点:

    • 可去间断点: lim ⁡ x → ∞ f ( x ) = A ≠ f ( x 0 ) \lim_{x \rightarrow \infty}f(x) = A \neq f(x_0) limxf(x)=A=f(x0)
    • 跳跃间断点: lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) \lim_{x \rightarrow x_0^-}f(x) \neq \lim_{x \rightarrow x_0^+}f(x) limxx0f(x)=limxx0+f(x)
  2. 第二类间断点:

    • 无穷间断点: lim ⁡ x → x 0 f ( x ) = ∞ \lim_{x \rightarrow x_0}f(x) = \infty limxx0f(x)=
    • 振荡间断点: lim ⁡ x → x 0 f ( x ) \lim_{x \rightarrow x_0}f(x) limxx0f(x)不存在。

需要注意的是,有一种题型是在求 f ( x ) = lim ⁡ n → ∞ ( . . . ) f(x) = \lim_{n \rightarrow \infty}(...) f(x)=limn(...),在计算当n趋向于无穷的时候,f(x)的取值,需要根据x的不同取值,先计算n的极限,得到关于f(x)的分段函数。


以上内容是DataWhale第28期组队学习,根据同期b站视频考研数学之高等数学(一二三都适用)学习整理所得,若有不足,望指出。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值