概念
从计算机硬件角度:
计算机的核心就是PCU,承担了所有的的计算任务。一个CPU,在一个时间切片里只能运行一个程序
一、线程
线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务
方法:
-
start 线程准备就绪,等待
-
setName 设置线程名称
-
getName 获取线程名称
-
setDaemon 把一个主进程设置为Daemon线程后,主线程执行过程中,后台线程也在进行,后台线程也在进行,主线程执行完毕后,后台不论执行完成都会停止
-
join 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
-
run 线程被cpu调度后自动执行线程对象的run方法
threading模块
线程的两种调用方式:
1、直接调用(常用)
import threading
import time
'''直接调用'''
def hello(name):
print("hello %s"%name)
time.sleep(3)
if __name__ == "__main__":
t1 = threading.Thread(target=hello,args=("zhangsan",)) #生成线程实例
t2 = threading.Thread(target=hello,args=("lisi",))
t1.setName("aaa") #设置线程名
t1.start() #启动线程
t2.start()
t2.join() #等待t2执行完毕
print("hello")
print(t1.getName()) #获取线程名
2、继承式调用
import threading
import time
class MyThread(threading.Thread):
def __init__(self,name):
threading.Thread.__init__(self)
self.name = name
def run(self):
print("hello %s"%self.name)
time.sleep(3)
if __name__ =="__main__":
t1 = MyThread("zhangsan")
t2 = MyThread("lisi")
t1.start()
t2.start()
setDaemon线程
import threading
import time
def run(n):
print("hello..[%s]\n"%n)
time.sleep(2)
def main():
for i in range(5):
t = threading.Thread(target=run,args=[])
t.start()
t.join()
b = threading.Thread(target=main,args=[])
b.setDaemon(True) #将主线程设置Daemon设置为True后,主线程执行完成时,其它子线程会同时退出,不管是否执行完任务
print("done")
进程
multiprocessing模块
进程调用
from multiprocessing import Process
import time
def start(name):
time.sleep(1)
print('hello',name)
if __name__ == '__main__':
p = Process(target=start,args=('zhangsan',))
p1 = Process(target=start,args=('lisi',))
p.start()
p1.start()
p.join()
进程间通信
每个进程都拥有自己的内存空间,因此不同进程内存空间是不共享的,要想实现两个进程间的数据交换,有几种办法
Queue(队列)
from multiprocessing import Process, Queue
def start(q):
q.put('hello')
if __name__ =='__main__':
q = Queue()
p = Process(target=start,args=(q,))
p.start()
print(q.get())
p.join()
Pipe(管道,不常用)
把管道的两头分别赋给两个进程,实现两个进程的互相通信
from multiprocessing import Process,Pipe
def start(conn):
conn.send('hello') #发送
print(conn.recv()) #接收
conn.close()
if __name__ == '__main__':
parent_conn, child_conn = Pipe() #生成一个管道
p = Process(target=start,args=(child_conn,))
p.start()
print(parent_conn.recv()) #接收
parent_conn.send('111') #发送
p.join()
Manager(实现了进程间真正的数据共享)
from multiprocessing import Process, Manager
def f(dic, list,i):
dic['1'] = 1
dic['2'] = 2
dic['3'] = 3
list.append(i)
if __name__ == '__main__':
manager = Manager()
dic = manager.dict()#通过manager生成一个字典
list = manager.list(range(5))#通过manager生成一个列表
p_list = []
for i in range(10):
p = Process(target=f, args=(dic, list,i))
p.start()
p_list.append(p)
for res in p_list:
res.join()
print(dic)
print(list)
#输出结果
{'1': 1, '2': 2, '3': 3}
[0, 1, 2, 3, 4, 4, 9, 0, 7, 3, 6, 1, 5, 8, 2]
进程池
进程池内部维护讴歌进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进程,那么程序就会等待,知道进程池中有可用进程为止。
进程池有两个方法
1、apply(同步)
2、apply_async(异步)
from multiprocessing import Process,Pool
import time
def Foo(i):
time.sleep(1)
return i+100
def Bar(arg):
print('number::',arg)
if __name__ == '__main__':
pool = Pool(3) #定义一个进程池,里面有三个进程
for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar)
pool.close() #关闭进程池
pool.join() #进程池中进程执行完毕后再关闭(必须先close在join)
#输出结果
number:: 100
number:: 101
number:: 102
number:: 103
number:: 104
number:: 105
number:: 106
number:: 107
number:: 108
number:: 109
协程
协程又称微线程,是一种用户状态的轻量级线程。协成能保留上一次调用时的状态每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置,当程序众存在大量不需要CUP操作时(IO),适用于协程
协程有极高的执行效率,因为子程序切换不是线程切换,而是有程序自身控制,因此,没有线程切换的开销
不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多
因为协程是一个线程执行,所以想要利用多核CPU,最简单的方法是多进程+协程,这样既充分利用多核,又充分发挥协程的高效率。
那符合什么条件就能称之为协程:1、必须在只有一个单线程里实现并发 2、修改共享数据不需加锁 3、用户程序里自己保存多个控制流的上下文栈 4、一个协程遇到IO操作自动切换到其它协程
python中对于协程有两个模块,greenlet和gevent。
Greenlet(greenlet的执行顺序需要我们手动控制)
from greenlet import greenlet
def test1():
print (11)
gr2.switch() #手动切换
print (22)
gr2.switch()
def test2():
print (33)
gr1.switch()
print (44)
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
gevent(自动切换,由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成)
from gevent import monkey; monkey.patch_all()
import gevent
import time
def foo():
print('11')
time.sleep(3)
print('22')
def bar():
print('33')
print('44')
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
#输出结果 从结果可以看出,它是并发执行的
11
33
44
22