Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning CT

这篇读书报告介绍了《Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images》,该论文提出了一种改进的U-Net结构,用于在鼻咽癌放疗计划CT图像中进行精确的肿瘤和淋巴结分割。网络采用注意力模块来解决反卷积过程中的信息损失问题,并用Dice损失和Hausdorff距离作为损失函数。实验结果表明,该方法在184例患者数据集上优于其他网络,但在软组织对比度低和专家标注差异大的情况下,精度可能受到影响。
摘要由CSDN通过智能技术生成

Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images

读书报告

wxy

 

论文基本信息:

Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography ImagesConcept

基于Unet,包含了T分期信息。

  • TNM系统是应用最广泛的癌症分期系统。大多数医院和医疗中心都使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值