语义分割--Pixel Deconvolutional Networks

Pixel Deconvolutional Networks

https://arxiv.org/abs/1705.06820

本文首先指出在常规的 deconvolutional operation 会导致 所谓的 checkerboard 问题。这主要是因为 deconvolution operation 生成的特征图 相邻像素没有相关性导致的。为此我们提出了 pixel deconvolutional layer (PixelDCL) 来建立特征图相邻像素的相关性,从而解决这个 checkerboard 问题。

我们先来看看常规的 deconvolutional operation
这里写图片描述

对于一个 4 × 4 输入特征图,我们使用四个不同的卷积核得到四个 4 × 4中间特征图,然后我们将这四个中间特征图组合起来得到 一个 8 × 8 的输出特征图。
Note that the four intermediate feature maps rely on the input feature map, but there is no direct relationship among them.
注意这四个中间特征图之间没有直接的联系。
Due to the periodical shuffling operation, adjacent pixels on the output feature map are from different intermediate feature maps. This implies that the values of adjacent pixels can be significantly different from each other, resulting in the problem of checkerboard artifacts

延伸阅读:
http://www.jianshu.com/p/36ff39344de5
http://distill.pub/2016/deconv-checkerboard/

本文提出了 iPixelDCL 来建立 中间特征图之间的直接联系
这里写图片描述

下面我们来看看在 iPixelDCL 中 这四个中间特征图是怎么生生成的。
The purple feature map is generated from the input feature map (blue)
首先紫色的特征图有蓝色输入特征图直接生成。

The orange feature map is conditioned on both the input feature map and the purple feature
map that has been generated previously
黄色特征图的生成依赖于 输入特征图和紫色特征图

the green feature map relies on the input feature map, purple and orange intermediate feature maps.
绿色特征图的生成依赖于 输入特征图、紫色特征图、黄色特征图。

The red feature map is generated based on the input feature map, purple, orange, and green intermediate feature maps
红色特征图生成依赖于 输入特征图、紫色、黄色、绿色特征图。

在 PixelDCL 中,我们只容许紫色特征图依赖于输入特征图。
the orange feature map only depends on the purple feature map. The green feature map relies on the purple and orange feature maps. The red feature map is conditioned on the purple, orange, and green feature maps
输入特征图的影响通过紫色特征图传递到其他特征图。

Pixel Deconvolutional Networks
这里写图片描述

注意这里又和上面的步骤有一些不同。

这里写图片描述

这里写图片描述
上图第一行是图像,第二行是真值,第三行是 常规反卷积结果,第四行是 iPixelDCL 结果,第五行是 PixelDCL 结果。

这里写图片描述

天池赛事的零基础入门语义分割-地表建筑物识别任务是一个面向初学者的语义分割竞赛。任务的目标是利用机器学习和计算机视觉技术,对卫星图像中的地表建筑物进行标记和识别。 在这个任务中,参赛者需要使用给定的训练数据集进行模型的训练和优化。训练数据集包含了一系列卫星图像和相应的像素级标注,标注了地表建筑物的位置。参赛者需要通过分析训练数据集中的图像和标注信息,来构建一个能够准确地识别出地表建筑物的模型。 参赛者需要注意的是,语义分割是指将图像中的每个像素进行分类,使得同一类别的像素具有相同的标签。因此,在地表建筑物识别任务中,参赛者需要将地表建筑物区域与其他区域进行区分,并正确地进行标记。这对于初学者来说可能是一个挑战,因此需要掌握基本的图像处理和机器学习知识。 参赛者可以根据自己的理解,选择合适的算法和模型来完成这个任务。常见的方法包括卷积神经网络(CNN),通过设计适当的网络结构和训练方式,提高模型的准确性和泛化能力。同时,数据预处理和数据增强技术也是提高模型性能的关键。参赛者可以通过对数据进行增强和扩充,提高模型的鲁棒性和识别能力。 最后,参赛者需要使用训练好的模型对测试数据集进行预测,并生成预测结果。这些预测结果将用于评估参赛者模型的性能和准确度。评估指标通常包括像素级准确度(Pixel Accuracy)和平均交并比(Mean Intersection over Union),参赛者需要根据这些指标来评估和改进自己的模型。 总之,通过参加这个任务,初学者可以通过实践和挑战来提高自己的图像处理和机器学习技能,并掌握语义分割的基本概念和方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值