张量网络的构成与MPO模型的转化

问题:如何进行下图中的转换:

在这里插入图片描述
在 “TEBD算法计算一维格点模型基态”以及 “MPO与一维热力学计算”中我们都提出了以上的问题,现在让我们来看看这个问题是如何解决的。


通过研读论文“Linearized Tensor Renormalization Group Algorithm for Thermodynamics of Quantum LatticeModels”(量子点阵模型热力学的线性张量重整化群算法LTRG))我们将对整个LTRG算法会更加的熟悉。
LTRG算法:采用了无限时间演化的分组抽取技术,使我们能直接处理转移矩阵,使其更具有可扩展性。


step1:得到张量网络

首先,我们给出一维量子多体模型中哈密顿量的形式:
H = ∑ i = 1 N h i , i + 1 = H 1 + H 2 H 1 = ∑ i = 1 N / 2 h 2 i − 1 , 2 i , H 2 = ∑ i = 1 N / 2 h 2 i , 2 i + 1 \begin{aligned} H &=\sum_{i=1}^{N} h_{i, i+1}=H_{1}+H_{2} \\ H_{1} &=\sum_{i=1}^{N / 2} h_{2 i-1,2 i}, H_{2}=\sum_{i=1}^{N / 2} h_{2 i, 2 i+1} \end{aligned} HH1=i=1Nhi,i+1=H1+H2=i=1N/2h2i1,2i,H2=i=1N/2h2i,2i+1我们将 H 1 , H 2 H_1,H_2 H1,H2展开可知:
H 1 = h 1 , 2 + h 3 , 4 + h 5 , 6 + . . . + h N − 1 , N H 2 = h 2 , 3 + h 4 , 5 + h 6 , 7 + . . . + h N , N + 1 H_1 = h_{1,2} +h_{3,4}+h_{5,6}+...+h_{N-1,N}\\H_2 = h_{2,3} +h_{4,5}+h_{6,7}+...+h_{N,N+1} H1=h1,2+h3,4+h5,6+...+hN1,NH2=h2,3+h4,5+h6,7+...+hN,N+1即: H 1 H_1 H1为作用在奇偶上的阿密顿量的和, H 2 H_2 H2为作用在偶奇上的阿密顿量的和(即将哈密顿量按格点编号分为两部分)
其中, N N N为格点的个数且为偶数
我们添加 2 K 2K 2K K K K很大)个完备基:
{ ∣ σ i j ⟩ } ( σ i j = 1 , ⋯   , D ) \left\{\left|\sigma_{i}^{j}\right\rangle\right\}\left(\sigma_{i}^{j}=1, \cdots, D\right) {σij}(σij=1,,D)其中, i i i为格点指标, j j j T r o t t e r Trotter Trotter指标。
于是我们可以将该模型的配分函数表示为:
Z N ≃ Tr ⁡ [ e − β H 1 / K e − β H 2 / K ] K = ∑ { σ i j } ∏ j = 1 K ⟨ σ 1 2 j − 1 … σ N 2 j − 1 ∣ e − β H 1 / K ∣ σ 1 2 j … σ N 2 j ⟩ × ⟨ σ 1 2 j … σ N 2 j ∣ e − β H 2 / K ∣ σ 1 2 j + 1 … σ N 2 j + 1 ⟩ \begin{aligned} Z_{N} & \simeq \operatorname{Tr}\left[e^{-\beta H_{1} / K} e^{-\beta H_{2} / K}\right]^{K} \\ &=\sum_{\left\{\sigma_{i}^{j}\right\}} \prod_{j=1}^{K}\left\langle\sigma_{1}^{2 j-1} \ldots \sigma_{N}^{2 j-1}\left|e^{-\beta H_{1} / K}\right| \sigma_{1}^{2 j} \ldots \sigma_{N}^{2 j}\right\rangle \\ & \times\left\langle\sigma_{1}^{2 j} \ldots \sigma_{N}^{2 j}\left|e^{-\beta H_{2} / K}\right| \sigma_{1}^{2 j+1} \ldots \sigma_{N}^{2 j+1}\right\rangle \end{aligned} ZNTr[eβH1/KeβH2/K]K={σij}j=1Kσ12j1σN2j1eβH1/Kσ12jσN2j×σ12jσN2jeβH2/Kσ12j+1σN2j+1该式还可以继续展开为:
Z N ≃ ∑ σ i j ⟨ σ 1 1 ⋯ σ N 1 ∣ e − β H 1 / K ∣ σ 1 2 ⋯ σ N 2 ⟩ ⟨ σ 1 2 ⋯ σ N 2 ∣ e − β H 2 / K ∣ σ 1 3 ⋯ σ N 3 ⟩ ⟨ σ 1 3 ⋯ σ N 3 ∣ e − β H 1 / K ∣ σ 1 4 ⋯ σ N 4 ⟩ ⟨ σ 1 4 ⋯ σ N 4 ∣ e − β H 2 / K ∣ σ 1 5 ⋯ σ N 5 ⟩ ⋯ ⟨ σ 1 2 K − 1 ⋯ σ N 2 K − 1 ∣ e − β H 1 / K ∣ σ 1 2 K ⋯ σ N 2 K ⟩ ⟨ σ 1 2 K ⋯ σ N 2 K ∣ e − β H 2 / K ∣ σ 1 1 ⋯ σ N 1 ⟩ \begin{array}{l} Z_{N} \simeq \\ \sum_{\sigma_{i}^{j}}\left\langle\sigma_{1}^{1} \cdots \sigma_{N}^{1}\left|e^{-\beta H_{1} / K}\right| \sigma_{1}^{2} \cdots \sigma_{N}^{2}\right\rangle\left\langle\sigma_{1}^{2} \cdots \sigma_{N}^{2}\left|e^{-\beta H_{2} / K}\right| \sigma_{1}^{3} \cdots \sigma_{N}^{3}\right. \\ \rangle\left\langle\sigma_{1}^{3} \cdots \sigma_{N}^{3}\left|e^{-\beta H_{1} / K}\right| \sigma_{1}^{4} \cdots \sigma_{N}^{4}\right\rangle\left\langle\sigma_{1}^{4} \cdots \sigma_{N}^{4}\left|e^{-\beta H_{2} / K}\right| \sigma_{1}^{5} \cdots \sigma_{N}^{5}\right\rangle \\ \cdots \\ \left\langle\sigma_{1}^{2 K-1} \cdots \sigma_{N}^{2 K-1}\left|e^{-\beta H_{1} / K}\right| \sigma_{1}^{2 K} \cdots \sigma_{N}^{2 K}\right\rangle\left\langle\sigma_{1}^{2 K} \cdots \sigma_{N}^{2 K}\left|e^{-\beta H_{2} / K}\right|\right. \\ \left.\sigma_{1}^{1} \cdots \sigma_{N}^{1}\right\rangle \end{array} ZNσijσ11σN1eβH1/Kσ12σN2σ12σN2eβH2/Kσ13σN3σ13σN3eβH1/Kσ14σN4σ14σN4eβH2/Kσ15σN5σ12K1σN2K1eβH1/Kσ12KσN2Kσ12KσN2KeβH2/Kσ11σN1假设空间和时间上都满足周期性边界条件: σ i 1 = σ i 2 K + 1 \sigma_{i}^{1} = \sigma_{i}^{2K+1} σi1=σi2K+1 σ 1 j = σ N + 1 j \sigma_{1}^{j} = \sigma_{N+1}^{j} σ1j=σN+1j
对其中的每一项再进行分解:其中:
⟨ σ 1 1 σ 2 1 ⋯ σ N 1 ∣ e − β H 1 / K ∣ σ 1 2 σ 2 2 ⋯ σ N 2 ⟩ = ⟨ σ 1 1 σ 2 1 ⋯ σ N 1 ∣ e − β ∑ i = o d d h i , i + 1 / K ∣ σ 1 2 σ 2 2 ⋯ σ N 2 ⟩ = ⟨ σ 1 1 σ 2 1 ∣ e − β h 1 , 2 / K ∣ σ 1 2 σ 2 2 ⟩ ⟨ σ 3 1 σ 4 1 ∣ e − β h 3 , 4 / K ∣ σ 3 2 σ 4 2 ⟩ ⋯ ⟨ σ N − 1 1 σ N 1 ∣ e − β h N − 1 , N / K ∣ σ N − 1 2 σ N 2 ⟩ = ν σ 1 1 σ 2 1 , σ 1 2 σ 2 2 ν σ 3 1 σ 4 1 , σ 3 2 σ 4 2 ⋯ ν σ N − 1 1 σ N 1 , σ N − 1 2 σ N 2 ≡ ν 1 , 2 1 , 2 ν 3 , 4 1 , 2 ⋯ ν N − 1 , N 1 , 2 \begin{aligned} &\left\langle\sigma_{1}^{1} \sigma_{2}^{1} \cdots \sigma_{N}^{1}\left|e^{-\beta H_{1} / K}\right| \sigma_{1}^{2} \sigma_{2}^{2} \cdots \sigma_{N}^{2}\right\rangle \\ =&\left\langle\sigma_{1}^{1} \sigma_{2}^{1} \cdots \sigma_{N}^{1}\left|e^{-\beta \sum_{i=o d d} h_{i, i+1} / K}\right| \sigma_{1}^{2} \sigma_{2}^{2} \cdots \sigma_{N}^{2}\right\rangle \\ =&\left\langle\sigma_{1}^{1} \sigma_{2}^{1}\left|e^{-\beta h_{1,2} / K}\right| \sigma_{1}^{2} \sigma_{2}^{2}\right\rangle\left\langle\sigma_{3}^{1} \sigma_{4}^{1}\left|e^{-\beta h_{3,4} / K}\right| \sigma_{3}^{2} \sigma_{4}^{2}\right\rangle \\ & \cdots\left\langle\sigma_{N-1}^{1} \sigma_{N}^{1}\left|e^{-\beta h_{N-1, N} / K}\right| \sigma_{N-1}^{2} \sigma_{N}^{2}\right\rangle \\ =& \nu_{\sigma_{1}^{1} \sigma_{2}^{1}, \sigma_{1}^{2} \sigma_{2}^{2}} \nu_{\sigma_{3}^{1} \sigma_{4}^{1}, \sigma_{3}^{2} \sigma_{4}^{2} \cdots \nu_{\sigma_{N-1}^{1} \sigma_{N}^{1}, \sigma_{N-1}^{2} \sigma_{N}^{2}}} \\ \equiv & \nu_{1,2}^{1,2} \nu_{3,4}^{1,2} \cdots \nu_{N-1, N}^{1,2} \end{aligned} ===σ11σ21σN1eβH1/Kσ12σ22σN2σ11σ21σN1eβi=oddhi,i+1/Kσ12σ22σN2σ11σ21eβh1,2/Kσ12σ22σ31σ41eβh3,4/Kσ32σ42σN11σN1eβhN1,N/KσN12σN2νσ11σ21,σ12σ22νσ31σ41,σ32σ42νσN11σN1,σN12σN2ν1,21,2ν3,41,2νN1,N1,2
同样可得:
⟨ σ 1 2 σ 2 2 ⋯ σ N 2 ∣ e − β H 2 / K ∣ σ 1 3 σ 2 3 ⋯ σ N 3 ⟩ ≡ ν 2 , 3 2 , 3 ν 4 , 5 2 , 3 ⋯ ν N , 1 2 , 3 \begin{aligned} &\left\langle\sigma_{1}^{2} \sigma_{2}^{2} \cdots \sigma_{N}^{2}\left|e^{-\beta H_{2} / K}\right| \sigma_{1}^{3} \sigma_{2}^{3} \cdots \sigma_{N}^{3}\right\rangle \\ \equiv & \nu_{2,3}^{2,3} \nu_{4,5}^{2,3} \cdots \nu_{N, 1}^{2,3} \end{aligned} σ12σ22σN2eβH2/Kσ13σ23σN3ν2,32,3ν4,52,3νN,12,3
所以配分函数可以写为:
Z N ≃ ∑ σ i j ( ν 1 , 2 1 , 2 ν 3 , 4 1 , 2 ⋯ ν N − 1 , N 1 , 2 ) ( ν 2 , 3 2 , 3 ν 4 , 5 2 , 3 ⋯ ν N , 1 2 , 3 ) ( ν 1 , 2 3 , 4 ν 3 , 4 3 , 4 ⋯ ν N − 1 , N 3 , 4 ) ( ν 2 , 3 4 , 5 ν 4 , 5 4 , 5 ⋯ ν N , 1 4 , 5 ) \begin{array}{l} Z_{N} \simeq \\ \sum_{\sigma_{i}^{j}}\left(\nu_{1,2}^{1,2} \nu_{3,4}^{1,2} \cdots \nu_{N-1, N}^{1,2}\right)\left(\nu_{2,3}^{2,3} \nu_{4,5}^{2,3} \cdots \nu_{N, 1}^{2,3}\right) \\ \left(\nu_{1,2}^{3,4} \nu_{3,4}^{3,4} \cdots \nu_{N-1, N}^{3,4}\right)\left(\nu_{2,3}^{4,5} \nu_{4,5}^{4,5} \cdots \nu_{N, 1}^{4,5}\right) \end{array} ZNσij(ν1,21,2ν3,41,2νN1,N1,2)(ν2,32,3ν4,52,3νN,12,3)(ν1,23,4ν3,43,4νN1,N3,4)(ν2,34,5ν4,54,5νN,14,5) ⋯ \cdots ( ν 1 , 2 2 K − 1 , 2 K ν 3 , 4 2 K − 1 , 2 K ⋯ ν N − 1 , N 2 K − 1 , 2 K ) ( ν 2 , 3 2 K , 1 ν 4 , 5 2 K , 1 ⋯ ν N , 1 2 K , 1 ) \left(\nu_{1,2}^{2 K-1,2 K} \nu_{3,4}^{2 K-1,2 K} \cdots \nu_{N-1, N}^{2 K-1,2 K}\right)\left(\nu_{2,3}^{2 K, 1} \nu_{4,5}^{2 K, 1} \cdots \nu_{N, 1}^{2 K, 1}\right) (ν1,22K1,2Kν3,42K1,2KνN1,N2K1,2K)(ν2,32K,1ν4,52K,1νN,12K,1)
即:
Z N ≃ ∑ { σ i j } ∏ i = 1 N / 2 ∏ j = 1 K v σ 2 i − 1 2 j − 1 σ 2 i 2 j − 1 , σ 2 i − 1 2 j σ 2 i 2 j v σ 2 i 2 j σ 2 i + 1 2 j , σ 2 i 2 j + 1 σ 2 i + 1 2 j + 1 Z_{N} \simeq \sum_{\left\{\sigma_{i}^{j}\right\}} \prod_{i=1}^{N / 2} \prod_{j=1}^{K} v_{\sigma_{2 i-1}^{2 j-1} \sigma_{2 i}^{2 j-1}, \sigma_{2 i-1}^{2 j} \sigma_{2 i}^{2 j}} v_{\sigma_{2 i}^{2 j} \sigma_{2 i+1}^{2 j}, \sigma_{2 i}^{2 j+1} \sigma_{2 i+1}^{2 j+1}} ZN{σij}i=1N/2j=1Kvσ2i12j1σ2i2j1,σ2i12jσ2i2jvσ2i2jσ2i+12j,σ2i2j+1σ2i+12j+1于是我们的转移矩阵是一个四阶张量:
v σ 1 σ 4 , σ 2 σ 3 ≡ ⟨ σ 1 σ 4 ∣ exp ⁡ ( − β h i , i + 1 / K ) ∣ σ 2 σ 3 ⟩ v_{\sigma_{1} \sigma_{4}, \sigma_{2} \sigma_{3}} \equiv \left\langle\sigma_{1} \sigma_{4}\left|\exp \left(-\beta h_{i, i+1} / K\right)\right| \sigma_{2} \sigma_{3}\right\rangle vσ1σ4,σ2σ3σ1σ4exp(βhi,i+1/K)σ2σ3于是可以得到配分函数的张量网格图:在这里插入图片描述
图为对配分函数近似得到的转移矩阵张量网络
对所有的中间态 ∣ σ i j ⟩ |\sigma_{i}^{j}\rangle σij进行求和,即缩并张量网络中所有的 σ \sigma σ键,我们就可以得到配分函数了

step2 收缩张量网络

v v v张量进行SVD分解
v σ 1 σ 2 , σ 3 σ 4 = ∑ x = 1 D 2 U σ 1 σ 2 , x λ x V x , σ 3 σ 4 ⊤ ≡ ∑ x = 1 D 2 ( T a ) x , σ 1 , σ 2 ( T b ) x , σ 3 , σ 4 \begin{aligned} v_{\sigma_{1} \sigma_{2}, \sigma_{3} \sigma_{4}} &=\sum_{x=1}^{D^{2}} U_{\sigma_{1} \sigma_{2}, x} \lambda_{x} V_{x, \sigma_{3} \sigma_{4}}^{\top} \\ & \equiv \sum_{x=1}^{D^{2}}\left(T_{a}\right)_{x, \sigma_{1}, \sigma_{2}}\left(T_{b}\right)_{x, \sigma_{3}, \sigma_{4}} \end{aligned} vσ1σ2,σ3σ4=x=1D2Uσ1σ2,xλxVx,σ3σ4x=1D2(Ta)x,σ1,σ2(Tb)x,σ3,σ4其中对角矩阵 λ \lambda λ中有 D 2 D^{2} D2个奇异值,为了方便,我们引入两个辅助张量:
( T a ) x , σ 1 , σ 2 ≡ U σ 1 σ 2 , x λ x \left(T_{a}\right)_{x, \sigma_{1}, \sigma_{2}} \equiv U_{\sigma_{1} \sigma_{2}, x} \sqrt{\lambda_{x}} (Ta)x,σ1,σ2Uσ1σ2,xλx ( T b ) x , σ 3 , σ 4 ≡ V σ 3 σ 4 , x λ x \left(T_{b}\right)_{x, \sigma_{3}, \sigma_{4}} \equiv V_{\sigma_{3} \sigma_{4}, x} \sqrt{\lambda_{x}} (Tb)x,σ3,σ4Vσ3σ4,xλx
经过这种变换后,方块的张量网络变成了具有两个三阶张量 T a Ta Ta T b Tb Tb的六角张量网络,如图:
在这里插入图片描述

我们将所有的方块张量网络全分解后,原网络变为如图:
在这里插入图片描述
现将上图中最后两行中虚线圈包围的 σ \sigma σ键进行收缩,这就我们就得到两个四阶张量
( M a ) α , t 1 , β , b 1 = ∑ y = 1 D ( T a ) β , b 1 , y ( T b ) α , t 1 , y ( M b ) β , t 2 , γ , b 2 = ∑ z = 1 D ( T a ) γ , z , t 2 ( T b ) β , z , b 2 \begin{aligned} \left(M_{a}\right)_{\alpha, t_{1}, \beta, b_{1}} &=\sum_{y=1}^{D}\left(T_{a}\right)_{\beta, b_{1}, y}\left(T_{b}\right)_{\alpha, t_{1}, y} \\ \left(M_{b}\right)_{\beta, t_{2}, \gamma, b_{2}} &=\sum_{z=1}^{D}\left(T_{a}\right)_{\gamma, z, t_{2}}\left(T_{b}\right)_{\beta, z, b_{2}} \end{aligned} (Ma)α,t1,β,b1(Mb)β,t2,γ,b2=y=1D(Ta)β,b1,y(Tb)α,t1,y=z=1D(Ta)γ,z,t2(Tb)β,z,b2如图:
在这里插入图片描述
M a M_a Ma M b M_b Mb水平方向的键上都有一个对角矩阵 λ 1 , 2 \lambda_{1,2} λ1,2

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值