前言
“本地部署大模型的本质只是一个客户端”
人工智能的发展如火如荼,也让越来越多的人了解到人工智能;而对大部分人来说使用的都是第三方提供的客户端,不论是网页版,还是PC端或移动端。
那么,我们怎么在本地部署一款大模型呢?下面就来介绍三种工具。
01、本地部署大模型的三种工具
GPT4ALL
gpt4all是一款可以本地部署大模型的客户端工具,其支持window,macOS和ubuntu(一款linux桌面系统)系列。
其官网地址:https://gpt4all.io/index.html
github地址:https://github.com/nomic-ai/gpt4all
用户可以在自己电脑上安装GPT4ALL客户端,如下图所示:
用户可以选择自己需要的模型并进行下载使用,只需要有CPU即可,不需要有GPU的支持。
用户下载完客户端,并加载完模型之后,就可以像使用第三方的大模型一样使用,并且可以脱离网络使用。
GPT4ALL不但提供了桌面的客户端,对于懂技术的朋友来说,也提供了多语言的编程接口。
如下图所示,GPT4ALL提供了python和nodejs的编程接口。
文档地址:https://docs.gpt4all.io/
LLMStudio
LLMStudio是第二种本地部署大模型的工具,其同样支持多平台的操作系统:
官网地址:https://lmstudio.ai/
github地址:https://github.com/lmstudio-ai/lms
用户界面如下图所示,用户同样可以根据自己的需求下载对应的大模型,并使用。
LLMStudio同样支持接口访问,不过其仅支持通过API调用的方式访问,而不是像GPT4ALL可以直接使用python sdk的方式访问。
文档地址:https://lmstudio.ai/docs/local-server
Ollama
ollama是第三种本地部署大模型的方式,其同样支持三种平台,并且是完全开源的。
官网地址:https://ollama.com/
github地址:https://github.com/ollama/ollama
从使用者的角度来说,三者没有什么本质上的区别;只不过其对不同角色用户友好程度不一样。
比如,个人认为Ollama客户端更适合于开发者,而LLStudio更适合于使用者;因为LLMStudio的UI风丰富,而Ollama更简洁。
02、技术原理
从本质上来说,三种工具的技术没有本质上的区别,其都作为大模型的客户端来使用,只不过提供了更加丰富的使用方式用户界面和接口的方式。
而因为大模型的编程语言和访问方式的不同,工具可以通过混合编程,使用SDK和网络接口的方式来调用大模型的功能。
调用模型如下图所示:
从技术架构的角度来说,三种工具都采用了C/S模式的架构,LLM大模型作为服务器Server,三种工具作为客户端Client。
当然,对使用者来说需要使用三种工具作为客户端;而对开发者来说,也可以自己开发一款客户端来调用大模型,而如果对人工智能技术也有足够的研究,那么就可以自己开发并训练一款完全符合自己需求的大模型。
对使用者来说,他们需要的是使用好别人提供的大模型客户端;而对开发者来说,可以把大模型作为技术底座,在底座之上构建各种各样的应用。
零基础入门AI大模型
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
资料领取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击下方链接免费领取【保证100%免费】