前言
看到有很多小伙伴询问“如果我想学数据分析,学历到底重要吗?可能在很多人心里都会有这个疑问。小编觉得数据分析作为一项技术岗,对学历的要求其实并不是特别的为难,有能力才是最重要的,一般来讲专科及以上就可以。学历并不能代表一切,但是如果学历太低的话在学习数据分析的过程中可能会遇到很多困难,难以持续下去。
如果你有丰富的实战经验以及工作经验,并且你的工作能力也强,那么企业肯定愿意要。从大数据和行业方面来讲,公司看中的更多的是你的实战能力,并且你能快速一起参与项目操作,从而为公司创造更大更多的价值。
并不是说学历不重要,只是技术行业发展速度之快大家有目共睹,工作能力和进入行业之后不断学习的能力才是你未来可持续发展的机会。所以一味追求学历也是不可行的,学历只是敲门砖,想要有更好的发展,持续不断的学习才能让你走得更长久。
数据分析是什么?从字面来讲,数据分析就是分析数据,从数据里面寻求有价值的的信息,对业务产生一定的指导作用的过程。
然而要分析目的,如何分析,选取数据,分析出的结果如何应用,这四点是数据分析的工作的核心。
数据分析师主要有两个方向:
1.业务方向的数据分析师: 以提升业务为目的,配合部门一般为:运营,营销活动,客服和 售后,销售,财务等
2.技术方向的数据分析师: 以通过技术手段(算法)解决复杂的业务问题,配合部门业务,研发,算法等技术团队
下面我们就来简单分析一下:
1.业务能力。数据分析工作并不是简单的数据统计与展示,它有一个重要的前提就是需要懂业务,包括行业知识、公司业务及流程等,最好有自己独到的见解。数据分析的目的就是通过研究数据实现转化增长,若脱离行业背景和公司业务内容,数据分析就是一堆没有价值的数据图表而已。
2.工具使用能力。数据分析工具是实现数据分析方法理论的工具,面对越来越庞杂的数据,数据分析师必须要掌握相应的工具去对这些数据进行采集、清洗、分析和处理,以快速准确地的到最后的结果。常用工具有:Excel、SQL、Python、R、Tableau、BI等。
3.分析能力。数据分析师必须要掌握一些行之有效的的数据分析方法,并能灵活的与自身实际工作相结合。数据分析师常用的数据分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。
因此趁年轻,不要再犹豫了,努力了奋斗了才不会后悔。
读者福利:如果你对Python感兴趣,这套python学习资料可能你需要,文末可以免费领取,
对于0基础小白入门:
如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:Python安装包+激活码、Python web开发,Python爬虫,数据分析,人工智能、机器学习等教程。带你从零基础系统性的学好Python!
零基础Python学习资源介绍
👉Python学习路线汇总👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(学习教程文末领取哈)
👉Python必备开发工具👈
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉实战案例👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉100道Python练习题👈
检查学习结果。
👉面试刷题👈
资料领取
这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以点击下方微信卡片免费领取 ↓↓↓【保证100%免费】
或者
【点此链接】领取

好文推荐
了解python的前景:https://blog.csdn.net/weixin_49895216/article/details/127186741
了解python的兼职:https://blog.csdn.net/weixin_49895216/article/details/127124870