24个AI大模型功能比较(非常详细),零基础入门到精通,看这一篇就够了

前言

下面这份零基础AI大模型学习资料已经上传网盘,朋友们如果需要可以微信扫描下方二维码 即可自动领取↓↓↓

在这里插入图片描述
在这里插入图片描述

1. 文心一言

发展背景: 由百度开发,旨在提供自然语言处理服务。

功能特长: 文本生成、语义理解。

适用领域: 搜索引擎、智能客服。

官方链接: https://ai.baidu.com

2. 通千问大模型

发展背景: 由阿里巴巴集团推出,专注于问答系统。

功能特:智能问答、知识图谱。

适用领域: 在线客服、教育。

官方链接: https://www.aliyun.com

3. 混元AI模型

发展背景: 由华为诺亚方舟实验室开发,用于多模态学习。

功能特长: 图像识别、自然语言处理。

适用领域: 自动驾驶、智能家居。

官方链接: https://www.huaweicloud.com

4. 豆包AI模型

发展背景: 由字节跳动研发,专注于内容推荐。

功能特长: 个性化推荐、用户行为分析。

适用领域: 社交媒体、新闻推荐。

官方链接: https://bytedance.com

5. 商量(商汤)AI模型

发展背景: 由清华大学团队开发,用于智能对话系统。

功能特长: 对话生成、情感分析。

适用领域: 智能助手、客户服务。

官方链接 https://chat.sensetime.com

6. 星火认知大模型

发展背景: 由中国科学院自动化研究所推出,专注于认知计算。

功能特长: 知识推理、决策支持。

适用领域: 医疗诊断、金融分析。

官方链接: http://www.cas.cn

7. ChatGLMS模型

发展背景: 由上海交通大学团队开发,用于聊天机器人。

功能特长: 对话管理、上下文理解。

适用领域: 在线客服、虚拟助手。

官方链接: https://www.sjtu.edu.cn

8. 百川(百小应)AI模型

发展背景: 由北京百川智能推出,用于大数据处理。

功能特长: 数据分析、预测建模。

适用领域: 电商推荐、供应链管理。

官方链接: ying.baichuan-ai.com

9. 书生AI模型

发展背景: 由网易有道推出,专注于教育领域。

功能特长: 语言学习、知识问答。

适用领域: 在线教育、语言翻译。

官方链接: https://youdao.com

10. 蓝心(VIVO-BlueLM)

发展背景: 由VIVO公司开发,用于智能设备。

功能特长: 语音识别、自然语言理解。

适用领域: 智能手机、智能家居。

官方链接: https://www.vivo.com

11. 天工AI模型

发展背景: 由腾讯公司推出,用于游戏开发。

功能特长: 游戏AI、虚拟角色生成。

适用领域: 游戏、娱乐、编程。

官方链接: https://www.tiangong.cn

图片

12. 封神榜开源体系

发展背景: 由百度飞桨团队开发,用于开源AI平台。

功能特长: 模型训练、算法优化。

适用领域: 机器学习、深度学习。

官方链接: www.paddlepaddle.org.cn

13. KnowLM平台

发展背景: 由科大讯飞推出,专注于知识图谱。

功能特长: 知识抽取、知识融合。

适用领域: 智能问答、数据分析。

官方链接: https://www.iflytek.com

14. CPM-Bee模型

发展背景: 由清华大学团队开发,用于文本生成。

功能特: 文本摘要、自动写作。

适用领域: 新闻编辑、内容创作。

官方链接: www.tsinghua.edu.cn

15. Kimi AI模型

发展背景: 由月之暗面公司推出,用于智能家居。

功能特长: 语音控制、设备互联。

适用领域: 智能家居、物联网。

官方链接: https://kimi.moonshot.cn

16. 腾讯元宝模型

发展背景: 由腾讯公司推出,用于金融科技。

功能特长: 风险评估、智能投顾。

适用领域: 金融分析、投资顾问。

官方链接: cloud.tencent.com

17. 盘古大模型

发展背景: 由华为诺亚方舟实验室开发,用于多模态学习。

功能特长: 图像识别、自然语言处理。

适用领域: 自动驾驶、智能家居。

官方链接: www.huaweicloud.com

图片

18. 智谱清言大模型

发展背景: 由智谱AI推出,专注于知识图谱。

功能特长: 知识抽取、知识融合。

适用领域: 智能问答、数据分析。

官方链接: https://chatglm.cn

19. 科大讯飞星火大模型

发展背景: 由科大讯飞推出,用于语音识别。

功能特长: 语音转写、语音合成。

适用领域: 语音助手、会议记录。

官方链接: https://www.iflytek.com

20. 360智脑模型

发展背景: 由360公司推出,用于网络安全。

功能特长: 恶意检测、异常行为分析。

适用领域: 网络安全、数据保护。

官方链接: https://ai.360.com

21. 赤兔大模型

发展背景: 由容联云推出,聚焦企业营销&服务场景。

功能特长: AI基础能力、会话分析洞察。

适用领域: 灵活人机协同

官方链接: www.yuntongxun.com

22. 文修大模型

发展背景: 由密度公司推出,用于文本编辑。

功能特长: 文本校对、语法纠错。

适用领域: 写作辅助、编辑校对。

官方链接: https://www.midu.com

23. YonGPT大模型

发展背景: 由用友推出,用于自然语言处理。

功能特长: 赋能财务、人力、业务智能化。

适用领域: 企业财务、人力、业务客服。

官方链接 https://iuap.yonyou.com

24. 写易智能创作引擎

发展背景: 由写易科技推出,用于内容创作。

功能特长: 自动写作、内容优化。

适用领域: 新闻编辑、内容创作。

官方链接: xiezuo.fangzhouedu.cn


请注意,以上信息可能随时间而变化,官方链接和模型的具体功能可能会有所更新。建议访问官方网站获取最新信息。

这些AI大模型的出现,标志着中国在人工智能领域的快速发展。

它们各自具备独特的功能和应用场景,助力不同行业的智能化升级与创新。

未来,随着技术的不断突破,AI大模型将在更多领域发挥重要作用。

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

<think>好的,我现在需要帮助用户查找关于Traefik插件的使用说明、配置和示例。首先,用户提到他们想了解与Traefik插件相关的信息,特别是使用说明、配置和示例。根据用户提供的引用内容,我需要整理这些信息,并按照用户的要求进行结构化回答。 首先,我要回顾用户提供的引用内容。引用[1]提到了在静态配置文件中添加插件的配置示例,引用[3]和[5]介绍了GitHub上的示例插件demo,说明插件是通过Yaegi动态执行的,并提到了开发指南。引用[4]提到了使用Helm chart部署Traefik,这可能与插件的安装有关。引用[2]可能是一个Terraform的示例,但具体内容不明确,暂时可能用不上。 接下来,我需要确定用户的需求:他们需要知道如何配置和使用Traefik插件,包括具体的步骤和示例。根据引用内容,可以分步骤说明配置方法,比如静态配置文件中的设置,以及插件的开发或使用现有插件的步骤。可能还需要提到动态加载和注意事项,如实验性功能、版本兼容性等。 需要确保回答符合用户的要求,结构清晰,分步骤说明。同时,要引用提供的引用内容,正确标注引用标识。例如,引用[1]中的配置示例,引用[3]关于GitHub仓库的信息,引用[4]提到的Helm安装方法,以及引用[5]的项目介绍部分。 另外,用户可能对插件的实际应用场景和如何开发自己的插件感兴趣,所以可能需要包含这些信息。还要生成相关问题,如如何开发自定义插件、动态加载机制、性能影响等。 需要注意的是,用户提供的引用中有部分内容可能不直接相关,比如引用[2]的Terraform示例,但如果没有更相关的信息,可以暂时忽略。确保回答中的引用准确对应到相关的部分。 总结回答结构: 1. 插件配置步骤,包括静态配置文件示例和Helm安装。 2. 使用现有插件的步骤,比如demo插件的安装。 3. 开发自定义插件的基本流程。 4. 注意事项,如实验性功能、版本要求等。 5. 相关问题部分,生成相关问题。 现在需要将这些信息整合成自然的中文回答,正确引用来源,并确保LaTeX格式符合要求,虽然用户的问题可能不涉及数学公式,但如果有变量或代码,需要使用正确的格式。例如,配置示例中的代码块需要用反引号包裹,并注明语言类型。 检查是否有遗漏的信息,比如引用[3]提到的Yaegi解释器,可能需要解释动态加载机制。同时,引用[5]提到插件是扩展Traefik功能的强大工具,可以用于流量管理,这部分可以在应用场景中提及。 最后,生成的相关问题需要与Traefik插件的使用、开发、配置相关,确保问题有针对性,能够引导用户进一步探索。</think>### Traefik 插件使用说明与配置示例 #### 1. 插件配置基础步骤 Traefik 插件通过静态配置文件或动态加载实现。以下为静态配置示例(需在 Traefik 的 YAML 配置文件中添加): ```yaml experimental: localPlugins: example: moduleName: github.com/traefik/plugindemo # 插件模块路径[^1] ``` 此配置声明了一个名为 `example` 的本地插件,指向 GitHub 上的示例仓库[^3]。 若使用 Helm 安装 Traefik,需在 `values.yaml` 中启用插件支持: ```yaml experimental: plugins: enabled: true # 启用插件功能[^4] ``` #### 2. 使用现有插件(以 demo 插件为例) 1. **安装插件** 通过修改 Traefik 部署配置,将插件代码编译到 Traefik 二进制文件中,或通过动态加载(需 Yaegi 支持)。 2. **配置路由规则** 在 `IngressRoute` 中引用插件: ```yaml apiVersion: traefik.io/v1alpha1 kind: Middleware metadata: name: demo-plugin spec: plugin: example: # 插件名称 headerName: "X-Custom-Header" headerValue: "Hello from Plugin" ``` #### 3. 开发自定义插件 1. **代码结构** 遵循 Traefik 插件接口规范,实现 `New` 初始化方法和 `Handle` 请求处理逻辑[^3]。 2. **动态加载** 利用 Yaegi 解释器实时加载插件(无需重启 Traefik): ```go // 示例插件逻辑 func New(ctx context.Context, config *Configuration) (http.Handler, error) { return &demoPlugin{config}, nil } ``` #### 4. 注意事项 - **实验性功能**:插件功能标记为实验性,需在配置中显式启用[^4]。 - **版本兼容性**:确认 Traefik 版本支持插件(建议 v2.3+)[^4]。 - **安全限制**:动态加载插件需注意代码安全性,建议审核第三方插件[^5]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值