一、项目背景
社交网站Facebook用户遍布全球各大洲,旗下产品用户数破10亿,约23%的世界人口是Facebook用户,而且移动端月均活跃用户达到总用户数的97%。由此许多出海企业在海外推广时,都会在Facebook进行广告投放。
本文就使用kaggle上的Facebook广告投放效果案例数据集,站在广告商家的角度,对xyz 公司投放的三组广告进行数据分析,帮助商家判断广告是否达到预期,并找到精准的受众群体,优化广告投放效果。
二、数据来源
销售转化优化
本项目使用的数据来自某匿名组织的社交媒体广告活动。可以从这里下载数据文件。文件conversion_data.csv包含1143个观测值和11个变量。以下是这些变量的描述。
1.) ad_id: 每个广告的唯一ID。
2.) xyz_campaign_id: 与XYZ公司每个广告活动相关的ID。
3.) fb_campaign_id: Facebook用来追踪每个广告活动的ID。
4.) age: 显示广告的受众年龄。
5.) gender: 显示广告的受众性别。
6.) interest: 指定受众兴趣类别的代码(兴趣类别是受众在Facebook公共个人资料中提到的)。
7.) Impressions: 广告显示的次数。
8.) Clicks: 广告点击的次数。
9.) Spent: XYZ公司为在Facebook上显示该广告支付的费用。
10.) Total conversion: 看到广告后询问产品的总人数。
11.) Approved conversion: 看到广告后购买产品的总人数。
三、数据导入
通过navicat的导入向导功能将csv格式数据导入到mysql数据库
四、数据分析
通过navicat软件的BI功能进行数据的可视化分析
概念定义
效果指标:
点击率(CTR)= 点击量 / 曝光量
咨询转化率(CVR_T)= 咨询量 / 点击量
购买转化率(CVR_A)= 购买量 / 咨询量
支出回报率(ROI) = 购买量 /
通过sql语句计算各指标并转存到对应的数据表:
点击率:
-- 删除已存在的表(如果存在)
DROP TABLE IF EXISTS campaign_avg_ctr;
-- 创建新表
CREATE TABLE campaign_avg_ctr (
xyz_campaign_id INT,
avg_ctr DECIMAL(5,5)
);
-- 将计算结果插入新表
INSERT