YOLOv5-6.1添加注意力机制(SE、CBAM、ECA、CA)

本文详细介绍了如何在YOLOv5中添加四种注意力机制:SE、CBAM、ECA和CA。通过注册注意力模块、修改配置文件并在C3层应用这些机制,提升模型的性能。提供了完整的代码链接和验证步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 添加方法

主要步骤:
(1)在models/common.py中注册注意力模块
(2)在models/yolo.py中的parse_model函数中添加注意力模块
(3)修改配置文件yolov5s.yaml
(4)运行yolo.py进行验证
各个注意力机制模块的添加方法类似,各注意力模块的修改参照SE。
本文添加注意力完整代码:https://github.com/double-vin/yolov5_attention

1. SE

Squeeze-and-Excitation Networks
https://github.com/hujie-frank/SENet

评论 117
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值