决策树分类实验

实验3 决策树分类实验上

一、实验要求

在计算机上验证和测试招聘数据的决策树分类实验,理解对离散特征如何根据信息熵生成决策树。

  • 实验目的

1、掌握决策树分类的原理

2、能够实现决策树分类算法;

三、实验内容

实验步骤

  1. 请阅读DecisionTree代码,解释_genTree函数是如何一步步生成决策树的。

  1. 请完成predict函数,实现决策树对新样本数据的分类识别,并测试识别效果

predictOne函数预测单个样本是否被录用(返回yes 或 no):

通过递归函数,通过字典中的键与样本单个数据x对应,逐层对应字典中的值,直到对应出yes或者no,递归结束

Predict函数调用predictOne函数,将结果储存为一个列表,供accuracy_score函数计算准确率

以X原始数据为测试集,预测的结果列表如下:

与原始标签集y完全对应

四、实验总结

1、掌握了决策树分类的原理

2、能够实现决策树分类算法

3. 字典的基础知识薄弱其中

字典的keys方法返回的对象不支持索引,此处报错耗费较多时间

4.递归预测函数的逻辑掌握不熟练,编写有难度,耗时较多

### 使用Python进行决策树分类实验 为了执行决策树分类实验,可以利用`scikit-learn`库中的`DecisionTreeClassifier`类来创建和训练模型。下面展示了具体的操作过程。 #### 导入必要的库 首先需要导入所需的库,包括用于处理数据集的工具以及构建决策树模型的核心组件。 ```python from sklearn.datasets import load_iris # 数据加载器 from sklearn.model_selection import train_test_split # 划分训练集测试集 from sklearn.tree import DecisionTreeClassifier # 决策树分类器 from sklearn.metrics import accuracy_score # 准确率评估函数 ``` #### 加载并准备数据集 这里以鸢尾花(Iris)数据集为例来进行说明。该数据集包含了不同种类鸢尾花的特征测量值及其对应的类别标签。 ```python data = load_iris() X, y = data.data, data.target # 将原始数据划分为训练集和测试集 x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) ``` #### 构建与训练决策树模型 通过设置不同的超参数选项(如分裂标准criterion),可以根据实际需求调整模型性能;同时设定随机种子random_state确保每次运行得到相同的结果[^4]。 ```python dt_clf = DecisionTreeClassifier(criterion='entropy', random_state=42) dt_clf.fit(x_train, y_train) ``` #### 测试模型准确性 完成训练之后,可以通过预测新样本并将这些预测结果同真实标签对比的方式衡量模型的表现。 ```python predictions = dt_clf.predict(x_test) accuracy = accuracy_score(y_test, predictions) print(f'Accuracy: {accuracy * 100:.2f}%') ``` 以上就是完整的基于`scikit-learn`框架下的决策树分类实验流程介绍[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值