一、脑图
二、文字
机器视觉和计算机视觉之间的区别主要体现在应用领域、技术手段以及目标上。
从应用领域的角度来看,机器视觉更多地被应用于工业自动化和质量控制中,如产品检测、缺陷识别等【12】。它依赖于额外的硬件输入/输出(I/O)和计算机网络来传输由其他过程组件生成的信息,例如机器人臂。而计算机视觉则更广泛地应用于图像处理、模式识别、机器学习和人工智能等领域【19】,其研究重点是通过算法让计算机理解和解释图像数据,以实现对现实世界的认知。
在技术手段上,机器视觉系统通常需要使用特定的硬件设备,如高精度相机、照明系统和图像采集卡等,以及相应的软件工具进行图像的采集、处理和分析【12】。而计算机视觉的研究则涵盖了从原始数据捕获到结合数字图像处理、模式识别、机器学习和人工智能的方法和技术【19】。近年来,深度学习技术的发展极大地推动了计算机视觉领域的进步,尤其是卷积神经网络(CNN)在图像基础任务中取得了巨大成功【14】。
从目标上看,机器视觉的目标主要是通过自动化的方式提高生产效率和产品质量,减少人工成本和错误率【12】。而计算机视觉的目标则更加广泛,不仅包括通过图像理解来模拟人类视觉的能力,还涉及到通过图像数据进行决策支持、环境交互等多种应用场景【19】。
机器视觉和计算机视觉虽然在某些技术和应用上有交集,但它们各自侧重的领域、采用的技术手段以及追求的目标存在明显差异。机器视觉更多关注于工业应用中的自动化检测和控制,而计算机视觉则致力于通过图像数据实现更广泛的认知和理解功能【2】【12】【19】。
三、参考文献
2. B. Batchelor and J. Charlier. “Machine vision is not computer vision.” Other Conferences (1998).