视觉技术学习笔记1——计算机视觉和机器视觉的区别

一、脑图

二、文字

机器视觉和计算机视觉之间的区别主要体现在应用领域、技术手段以及目标上。

从应用领域的角度来看,机器视觉更多地被应用于工业自动化和质量控制中,如产品检测、缺陷识别等【12】。它依赖于额外的硬件输入/输出(I/O)和计算机网络来传输由其他过程组件生成的信息,例如机器人臂。而计算机视觉则更广泛地应用于图像处理、模式识别、机器学习和人工智能等领域【19】,其研究重点是通过算法让计算机理解和解释图像数据,以实现对现实世界的认知。

在技术手段上,机器视觉系统通常需要使用特定的硬件设备,如高精度相机、照明系统和图像采集卡等,以及相应的软件工具进行图像的采集、处理和分析【12】。而计算机视觉的研究则涵盖了从原始数据捕获到结合数字图像处理、模式识别、机器学习和人工智能的方法和技术【19】。近年来,深度学习技术的发展极大地推动了计算机视觉领域的进步,尤其是卷积神经网络(CNN)在图像基础任务中取得了巨大成功【14】。

从目标上看,机器视觉的目标主要是通过自动化的方式提高生产效率和产品质量,减少人工成本和错误率【12】。而计算机视觉的目标则更加广泛,不仅包括通过图像理解来模拟人类视觉的能力,还涉及到通过图像数据进行决策支持、环境交互等多种应用场景【19】。

机器视觉和计算机视觉虽然在某些技术和应用上有交集,但它们各自侧重的领域、采用的技术手段以及追求的目标存在明显差异。机器视觉更多关注于工业应用中的自动化检测和控制,而计算机视觉则致力于通过图像数据实现更广泛的认知和理解功能【2】【12】【19】。

三、参考文献

1. A. Krizhevsky, I. Sutskever et al. “ImageNet classification with deep convolutional neural networks.” Communications of the ACM(2012). 

2. B. Batchelor and J. Charlier. “Machine vision is not computer vision.” Other Conferences (1998). 

3. Jia Deng, Wei Dong et al. “ImageNet: A large-scale hierarchical image database.” 2009 IEEE Conference on Computer Vision and Pattern Recognition(2009). 

4. D. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints.” International Journal of Computer Vision(2004).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值