圆环与圆盘转动惯量推导(通俗版)
一、圆环的转动惯量
场景:想象一个自行车轮胎(圆环),所有质量均匀分布在半径为 ( R ) 的圆周上。
推导思路:
- 圆环的每一小块质量 ( \Delta m ) 到转轴的距离都是 ( R )。
- 转动惯量公式 ( I = \sum (\Delta m \cdot R^2) ),因为所有 ( \Delta m ) 的 ( R ) 都相同,可以提取出来:
[
I = R^2 \sum \Delta m = R^2 \cdot M
]
其中 ( M ) 是圆环总质量。 - 结论:
[
I_{\text{圆环}} = M R^2
]
例子:
一个质量 ( M = 2 , \text{kg} )、半径 ( R = 0.5 , \text{m} ) 的呼啦圈,绕中心轴旋转的转动惯量为:
[
I = 2 , \text{kg} \times (0.5 , \text{m})^2 = 0.5 , \text{kg} \cdot \text{m}^2
]
意义:所有质量集中在边缘,转动惯量最大。
二、圆盘的转动惯量
场景ÿ