K-Means 聚类是最简单、经典的聚类算法,因为聚类中心个数,即 K 是需要提前设置好的,所以能使用的场景也比较局限。
比如可以使用 K-Means 聚类算法,对一张简单的表情包图片,进行前后背景的分割,对一张文本图片,进行文字的前景提取等。
K-Means 聚类能使用的距离度量方法不仅仅是欧式距离,也可以使用曼哈顿距离、马氏距离,思想都是一样,只是使用的度量公式不同而已。
聚类算法有很多,且看我慢慢道来。
————————————————
K-Means 聚类是最简单、经典的聚类算法,因为聚类中心个数,即 K 是需要提前设置好的,所以能使用的场景也比较局限。
比如可以使用 K-Means 聚类算法,对一张简单的表情包图片,进行前后背景的分割,对一张文本图片,进行文字的前景提取等。
K-Means 聚类能使用的距离度量方法不仅仅是欧式距离,也可以使用曼哈顿距离、马氏距离,思想都是一样,只是使用的度量公式不同而已。
聚类算法有很多,且看我慢慢道来。
————————————————