提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
|
|
| |
---|---|---|---|
样本要求 |
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn 来自 标准正态分布总体 N ( 0 , 1 ) N(0,1) N(0,1) | 设
X
,
Y
X,Y
X,Y 相互独立,且 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X \sim N(0,1),Y \sim \chi^{2}(n) X∼N(0,1),Y∼χ2(n) | 当
U
∼
χ
2
(
m
)
,
V
∼
χ
2
(
n
)
U \sim \chi{2}(m),V \sim \chi{2}(n)
U∼χ2(m),V∼χ2(n) 且 U , V U ,V U,V 相互独立 |
统计量 |
|
| F = U / m V / n F=\frac{U/m}{V/n} F=V/nU/m |
自由度 |
|
|
|
图像特征 |
∙
\bullet
∙ 随着样本数增加,概率密度图像从类似
l
o
g
log
log的对数图像逐渐接近柏松分布; ∙ \bullet ∙ 当 n → + ∞ n\rightarrow +\infty n→+∞时, χ 2 \chi^{2} χ2 分布的极限分布是正态分布 |
∙
\bullet
∙
t
t
t 分布是以0为中心,左右对称的单峰分布; ∙ \bullet ∙ t t t 分布图像与标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 图像非常相似,都是单峰偶函数,且 t ( n ) t(n) t(n)分布两侧尾部要比 N ( 0 , 1 ) N(0,1) N(0,1) 的两侧尾部粗一些; ∙ \bullet ∙ 自由度为1的 t t t分布称为柯西分布;随着自由度 n n n 的增加, t t t 分布的密度函数越来越接近标准正态分布密度函数 | |
性质 |
∙
\bullet
∙
χ
2
\chi^{2}
χ2 分布的期望:
E
(
Y
)
=
n
E(Y)=n
E(Y)=n ∙ \bullet ∙ 方差: D ( Y ) = 2 n D(Y)=2n D(Y)=2n ∙ \bullet ∙ χ 2 \chi^{2} χ2 分布具有可加性: 若 χ 1 2 ∼ χ 2 ( n 1 ) \chi_1^{2} \sim\chi^{2}(n_1) χ12∼χ2(n1) , χ 2 2 ∼ χ 2 ( n 2 ) \chi_2^{2} \sim\chi^{2}(n_2) χ22∼χ2(n2) 则 χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) \chi_1^{2} +\chi_2^{2}\sim\chi^{2}(n_1+n_2) χ12+χ22∼χ2(n1+n2) |
∙
\bullet
∙
n
≥
2
n \geq 2
n≥2 时,数学期望
E
(
T
)
=
0
E(T)=0
E(T)=0 ∙ \bullet ∙ n ≥ 3 n \geq 3 n≥3 时,方差 V a r ( T ) = n n − 2 Var(T)=\frac{n}{n-2} Var(T)=n−2n ∙ \bullet ∙ 当 n → + ∞ n\rightarrow +\infty n→+∞, t t t 变量的极限分布为 N ( 0 , 1 ) N (0,1) N(0,1) ∙ \bullet ∙ 其他性质: t 1 − α ( n ) = − t α ( n ) t_{1-\alpha }(n) = -t_{\alpha}(n) t1−α(n)=−tα(n) n ≥ 45 : t α ( n ) ≈ z α n \geq 45:t_{\alpha}(n) \approx z_{\alpha} n≥45:tα(n)≈zα (有的写的是 n ≥ 30 n \geq 30 n≥30) |
∙
\bullet
∙ 期望:
E
(
X
)
=
n
n
−
2
,
n
>
2
E(X)=\frac{n}{n-2},n > 2
E(X)=n−2n,n>2 ∙ \bullet ∙ 方差: D ( X ) = 2 n 2 ( m + n − 2 ) m ( m − 2 ) ( n − 4 ) D(X)= \frac{2n^2(m+n-2)}{m(m-2)(n-4)} D(X)=m(m−2)(n−4)2n2(m+n−2) ∙ \bullet ∙ 若 F ∼ F ( m , n ) F \sim F(m,n) F∼F(m,n),则有 1 F ∼ F ( n , m ) \frac{1}{F} \sim F(n,m) F1∼F(n,m) ∙ \bullet ∙ 若 T ∼ t n T \sim t_n T∼tn ,则 T 2 ∼ F ( 1 , n ) T^2 \sim F(1,n) T2∼F(1,n) F 1 − α ( m , n ) = 1 F α ( n , m ) F_{1-\alpha}(m,n)=\frac{1}{F_{\alpha}(n,m)} F1−α(m,n)=Fα(n,m)1 |
应用 | 用于样本方差到总体方差的推断性分 析;还能用于非参数检验(卡方检验)。 | 能在部分已知条件下,用于总体均值的推断分析。 |
F
F
F 分布能通过两个样本之间的关系推导出两个 总体之间的关系,能用于推断两个总体方差之间的比值关系。主要应用于方差分析、回归方程的显著性检验。 |
1 统计量
1.1 概念:
统计量是统计理论中用来对数据进行分析、检验的变量。简单点说,就是不含任何未知参数的样本的函数,就叫统计量。
在实际应用中,当我们从某个总体中抽取一个样本 ( X 1 , X 2 , X 3...... , X n ) (X1,X2,X3......,Xn) (X1,X2,X3......,Xn)后,并不能直接用它对总体的有关性质和特征进行推断,因为样本虽说是从总体中获取的代表,含有总体性质的信息,但还是会比较分散。当我们需要将统计的推断变成可能的,必须要把分散在样本中的信息集中起来,针对不同的目的,构造不同的样本函数,这种函数在统计学中成为统计量。
统计量是样本的一个函数。由样本构造具体的统计量,实际是对样本所含的总体信息按照一些要求进行加工处理,把分散在样本中的信息集中都统计量的取值上。不同的统计推断问题要求构造不同的统计量。
统计量是统计推断的基础,相当于概率论中的随机变量。在统计量的公式中不能依赖于总体分布的未知参数,如包含 E ( X ) , D ( X ) E(X),D(X) E(X),D(X)的都不是统计量。
1.2 常用统计量
一般在概率论中,将数学期望和方差等概念用‘矩’的概念描述。当n充分大时,有定理可以保证经验分布函数
F
n
(
x
)
F_n(x)
Fn(x) 很靠近总体分布函数
F
(
x
)
F(x)
F(x)。所以,经验分布函数
F
n
(
x
)
F_n(x)
Fn(x) 的各阶矩就反映了总体各阶矩的信息。通常把经验分布函数的各阶矩称为样本各阶矩。常用的样本各阶矩及其函数都是实际应用中的具体统计量。
*
|
|
|
---|---|---|
样本均值 | X = 1 n ∑ i = 1 n X i X=\frac{1}{n} \sum_{i=1}^{n}X_i X=n1∑i=1nXi | 即在总体中的样本数据的均值,反映样本数据的集中趋势。 |
样本方差 | S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2=\frac{1}{n-1} \sum_{i=1}^{n}(X_i-\bar{X})^2 S2=n−11∑i=1n(Xi−Xˉ)2 | 每个样本值与全体样本值平均数之差的平方值的平均数; 方差是用来衡量随机变量和其数学期望(均值)之间的偏离程度。 |
样本变异系数 | V = S X ˉ V=\frac{S}{\bar{X}} V=XˉS | 反映出随机变量在以它的均值为单位时取值的离散程度。 消除了均值不同对不同总体的离散程度的影响,用来刻画 均值不同时不同总体的离散程度。可应用与投资项目的 风险分析、不同群体或行业的收入差距描述中。 |
样本 k k k原点阶矩 | m k = 1 n ∑ i = 1 n X i k m_k=\frac{1}{n}\sum_{i=1}^{n}X_i^k mk=n1∑i=1nXik |
m
k
m_k
mk称为样本
k
k
k阶矩,反映了样本
k
k
k阶矩的信息。 m 1 m_1 m1,即 X ˉ \bar{X} Xˉ样本均值。 |
样本 k k k阶中心矩 | v k = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) k v_k= \frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^k vk=n−11∑i=1n(Xi−Xˉ)k | 称为样本
k
k
k阶中心矩。反映出样本
k
k
k阶中心矩的信息。 v 2 v_2 v2即样本方差。 |
样本偏度 | S 3 = n − 1 ( X i − X ˉ ) 3 ( ∑ i = 1 n ( X i − X ˉ ) 2 ) 3 / 2 S_3=\sqrt{n-1}\frac{(X_i-\bar{X})^3}{\left ( \sum_{i=1}^{n}(X_i-\bar{X})^2 \right )^{3/2}} S3=n−1(∑i=1n(Xi−Xˉ)2)3/2(Xi−Xˉ)3 | 偏度反映了随机变量密度函数曲线在众数(密度函数 在这一点达到最大值)两边的偏斜型。 若 X ∼ N ( μ , σ 2 ) X \sim N(μ,σ2) X∼N(μ,σ2),则偏度为 0。 |
样本峰度 | F 4 = ( n − 1 ) ∑ i = 1 n ( X i − X ˉ ) 4 [ ∑ i = 1 n ( X i − X ˉ ) 2 ] 2 − 3 F_4=\frac{(n-1) \sum_{i=1}^{n}(X_i-\bar{X})^4}{\left [ \sum_{i=1}^{n}(X_i-\bar{X})^2 \right ]^2}-3 F4=[∑i=1n(Xi−Xˉ)2]2(n−1)∑i=1n(Xi−Xˉ)4−3 | 峰度反映了密度函数曲线在众数附近的“峰”的尖峭程度。 正态随机变量 X ∼ N ( μ , σ 2 ) X \sim N(μ,σ2) X∼N(μ,σ2)的峰度为0。 偏度和峰度多应用在质量控制和可靠性研究中。 |
2 抽样分布
抽样分布中,最常用的分布其实是4种:z 分布(即正态分布)、卡方分布、t分布、F分布。
抽样分布、参数估计、假设检验是统计推断的重要内容。研究统计量的性质和评价一个统计推断的优良性,完全取决于抽样分布的性质。
前面介绍了统计量的概念(不含任何未知参数的样本的函数,就叫统计量),统计量的分布,就是抽样分布。
在总体 X X X 的分布类型已知时,若对任一自然数 n n n 都能导出统计量 T = T ( X 1 , X 2 , . . . , X n ) T = T(X1,X2,...,Xn) T=T(X1,X2,...,Xn) 的分布的数学表达式,这种分布称为精确的抽样分布,对于样本量 n n n 较小的统计推断问题很有作用。精确的抽样分布大多是在正态总体情况下得到的。在正态总体的体检下,主要有分布,t分布,F分布。
每种分布对应假设检验中的一种检验方法,后续讲假设检验的时候再详细讲解。因此这几种分布的知识是后续重要的基础。
2.1 卡方分布
2.1.1 概念
设
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn 来自正态分布总体
N
(
0
,
1
)
N(0,1)
N(0,1)的样本,
X
∼
N
(
0
,
1
)
X \sim N(0,1)
X∼N(0,1)
则称统计量
Y
=
X
1
2
+
X
2
2
+
⋯
,
X
n
2
Y=X_1^2+X_2^2+\cdots,X_n^2
Y=X12+X22+⋯,Xn2 服从自由度为
n
n
n 的
χ
2
\chi^{2}
χ2分布,记为
Y
∼
χ
2
(
n
)
Y \sim \chi^{2}(n)
Y∼χ2(n)。即它们的平方和
∑
i
=
1
n
X
i
2
\sum_{i=1}^{n}X_i^2
∑i=1nXi2 服从自由度为
n
n
n 的
χ
2
\chi^{2}
χ2分布。
由于组成卡方分布的每个样本
X
X
X 来自标准正态分布,所以每个独立样本的
期望
E
(
X
)
=
0
E ( X ) = 0
E(X)=0
方差
D
(
X
)
=
1
D(X)=1
D(X)=1
2.1.2 概率密度图像
χ
2
\chi^{2}
χ2 的概率密度函数为:
f
(
y
)
=
{
1
2
n
/
2
Γ
(
n
/
2
)
y
n
/
2
−
1
e
−
y
/
2
,
y
>
0
0
,
o
t
h
e
r
v
a
l
u
e
s
f(y)=\begin{cases} \frac{1}{2^{n/2}\Gamma(n/2)}y^{n/2-1}e^{-y/2} ,y>0 \\ 0,other\ values \end{cases}
f(y)={2n/2Γ(n/2)1yn/2−1e−y/2,y>00,other values
这里给出卡方分布的密度函数图像
- 随着样本数增加,卡方分布的概率密度图像逐渐从类似 l o g log log的对数图像逐渐接近柏松分布。使得概率密度图像呈现出和泊松等待相类似的特征。
- 由图可知:当自由度足够大时, χ 2 \chi^{2} χ2分布的概率密度曲线趋于对称。当 n → + ∞ n\rightarrow +\infty n→+∞时, χ 2 \chi^{2} χ2 分布的极限分布是正态分布。
2.1.3 性质
对于 χ 2 \chi^{2} χ2 分布来说它有两个性质
- 当 χ 2 \chi^{2} χ2 分布的期望 E ( Y ) = n E(Y)=n E(Y)=n 时,它的方差 D ( Y ) = 2 n D(Y)=2n D(Y)=2n
- χ 2 \chi^{2} χ2 分布具有可加性:
若 χ 1 2 ∼ χ 2 ( n 1 ) \chi_1^{2} \sim\chi^{2}(n_1) χ12∼χ2(n1), χ 2 2 ∼ χ 2 ( n 2 ) \chi_2^{2} \sim\chi^{2}(n_2) χ22∼χ2(n2),则 χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) \chi_1^{2} +\chi_2^{2}\sim\chi^{2}(n_1+n_2) χ12+χ22∼χ2(n1+n2)
- 当自由度足够大时, χ 2 \chi^{2} χ2分布的概率密度曲线趋于对称。当 n → + ∞ n\rightarrow +\infty n→+∞时, χ 2 \chi^{2} χ2 分布的极限分布是正态分布。
2.1.4 应用
卡方分布是一个连续型流程分布。
卡方分布能够用于从样本方差到总体方差的推断性分析;还能用于非参数检验(卡方检验)。
2.2 t t t 分布
若已知待分析的总体服从正态分布,从总体中抽取容量为
n
n
n 的所有可能样本,计算出每个样本的
T
T
T 统计量,则所有的
T
T
T 统计量的值将组成一个连续型概率分布,此分布为
T
T
T 分布。
2.2.1 概念
设
X
,
Y
X,Y
X,Y 相互独立,且
X
∼
N
(
0
,
1
)
,
Y
∼
χ
2
(
n
)
X \sim N(0,1),Y \sim \chi^{2}(n)
X∼N(0,1),Y∼χ2(n)
那么我们称随机变量
t
=
X
Y
/
n
t=\frac{X}{\sqrt{Y/n}}
t=Y/nX
服从自由度为
n
n
n 的
t
t
t 分布,也叫学生氏分布。
这个公式可以理解为:分子服从正态分布,分母服从标准化后的卡方分布。
2.2.2 图像特征
t分布的密度函数
f
(
x
)
=
Γ
[
(
n
+
1
)
/
2
]
π
n
Γ
(
n
/
2
)
(
1
+
x
2
n
)
−
(
n
+
1
)
/
2
f(x)=\frac{\Gamma[(n+1)/2]}{\sqrt{\pi n}\Gamma(n/2)}\left (1+\frac{x^2}{n} \right )^{-(n+1)/2}
f(x)=πnΓ(n/2)Γ[(n+1)/2](1+nx2)−(n+1)/2
- 图中看出, t t t 分布的密度函数曲线与标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 的密度函数曲线非常相似,都是单峰偶函数。
- t ( n ) t(n) t(n)的密度函数的两侧尾部要比 N ( 0 , 1 ) N(0,1) N(0,1) 的两侧尾部粗一些。 t ( n ) t(n) t(n) 的方差比 N ( 0 , 1 ) N(0,1) N(0,1) 的方差大一些。
- 自由度为1的分布称为柯西分布,随着自由度 n n n 的增加, t t t 分布的密度函数越来越接近标准正态分布密度函数(n≥30)。
- t t t 分布是以0为中心,左右对称的单峰分布。
当
n
n
n 足够大时
t
t
t 分布近似于标准正态分布,但当
n
n
n 较小时,
t
t
t 分布于标准正态分布相差很大。
2.2.3 性质
(1) 若随机变量 T ∼ t n T \sim t_n T∼tn,则
n ≥ 2 n \geq 2 n≥2 时,数学期望 E ( T ) = 0 E(T)=0 E(T)=0
n ≥ 3 n \geq 3 n≥3 时,方差 V a r ( T ) = n n − 2 Var(T)=\frac{n}{n-2} Var(T)=n−2n
(2) 当 n → + ∞ n\rightarrow +\infty n→+∞, t t t 变量的极限分布为 N ( 0 , 1 ) N (0,1) N(0,1)
(3) 其他性质
t 1 − α ( n ) = − t α ( n ) t_{1-\alpha }(n) = -t_{\alpha}(n) t1−α(n)=−tα(n)
n ≥ 45 : t α ( n ) ≈ z α n \geq 45:t_{\alpha}(n) \approx z_{\alpha} n≥45:tα(n)≈zα (有的写的是 n ≥ 30 n \geq 30 n≥30)
对于T分布来说,如果总体服从正态分布,总体标准差未知:
- 当样本容量小于30时,那么样本均值的抽样分布服从 T ∼ t ( n − 1 ) T \sim t(n-1) T∼t(n−1) 的 T T T 分布;
- 当样本容量大于等于30时,那么样本均值的抽样分布不仅服从 T ∼ t ( n − 1 ) T \sim t(n-1) T∼t(n−1) 的 T T T分布,而且还可以用 Z Z Z 分布来近似表达。
2.2.4 应用
T分布能在部分已知条件下,用于总体均值的推断分析。
2.3 F F F 分布
2.3.1 概念
当
U
∼
χ
2
(
m
)
,
V
∼
χ
2
(
n
)
U \sim \chi{2}(m),V \sim \chi{2}(n)
U∼χ2(m),V∼χ2(n)
且
U
,
V
U ,V
U,V 相互独立,则以下的统计量
F
=
U
/
m
V
/
n
F=\frac{U/m}{V/n}
F=V/nU/m
服从自由度为
(
m
,
n
)
(m,n)
(m,n) 的
F
F
F分布。这个公式相当于在t分布的基础上又增加了一步:分子是标准化的卡方分布,分母也是标准化的卡方分布。
这里的两个自由度是有先后顺序的,因此,如果互换一下分子分母,很容易得出结论:
1
F
∼
F
(
n
,
m
)
\frac{1}{F} \sim F(n,m)
F1∼F(n,m)
从上面很容易了解到,F统计量是由两个卡方统计量相除得到的,F分布也被称为方差比分布。
2.3.2 图像特征
F
F
F 分布概率密度函数
f
(
x
)
=
{
Γ
[
(
n
1
+
n
2
)
/
2
]
(
n
1
/
n
2
)
n
1
/
2
x
(
n
1
/
2
)
−
1
Γ
(
n
1
/
2
)
Γ
(
n
2
/
2
)
[
1
+
(
n
1
x
/
n
2
)
]
(
n
1
+
n
2
)
/
2
,
x
>
0
0
,
o
t
h
e
r
v
a
l
u
e
s
f(x)=\begin{cases} \frac{\Gamma [(n_1+n_2)/2](n_1/n_2)^{n_1/2}x^{(n_1/2)-1}}{\Gamma(n_1/2)\Gamma(n_2/2)[1+(n_1x/n_2)]^{(n_1+n_2)/2}} ,x>0 \\ 0,other\ values \end{cases}
f(x)={Γ(n1/2)Γ(n2/2)[1+(n1x/n2)](n1+n2)/2Γ[(n1+n2)/2](n1/n2)n1/2x(n1/2)−1,x>00,other values
概率密度图像:
2.3.3 性质
- 设随机变量 X X X 服从 F ( m , n ) F(m,n) F(m,n) 分布,则数学期望和方差分别为:
期望: E ( X ) = n n − 2 , n > 2 E(X)=\frac{n}{n-2},n > 2 E(X)=n−2n,n>2,方差: D ( X ) = 2 n 2 ( m + n − 2 ) m ( m − 2 ) ( n − 4 ) D(X)= \frac{2n^2(m+n-2)}{m(m-2)(n-4)} D(X)=m(m−2)(n−4)2n2(m+n−2)- 若 F ∼ F ( m , n ) F \sim F(m,n) F∼F(m,n),则有 1 F ∼ F ( n , m ) \frac{1}{F} \sim F(n,m) F1∼F(n,m)
- 若 T ∼ t n T \sim t_n T∼tn ,则 T 2 ∼ F ( 1 , n ) T^2 \sim F(1,n) T2∼F(1,n)
- F 1 − α ( m , n ) = 1 F α ( n , m ) F_{1-\alpha}(m,n)=\frac{1}{F_{\alpha}(n,m)} F1−α(m,n)=Fα(n,m)1
2.3.4 应用
F F F 分布能通过两个样本之间的关系推导出两个总体加粗样式之间的关系,能用于推断两个总体方差之间的比值关系。主要应用于方差分析、回归方程的显著性检验。
3 正态总体下的抽样分布
最后我们再介绍一下在总体是正态分布的前提下,常用统计量的分布规律。再强调一下,下面的规律都是基于总体服从正态分布的前提,这里只需要总体是正态分布即可,不需要是标准正态分布。
以下的这几个抽样分布还是很重要的,后续做区间估计的时候会用到这几个构造枢轴变量,用以进行总体参数估计。
3.1 关于样本均值的分布
样本均值经过以下标准化后,服从标准正态分布。
X
ˉ
−
μ
σ
/
n
∼
N
(
0
,
1
)
\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)
σ/nXˉ−μ∼N(0,1)
即样本均值的期望等于总体期望,样本均值的方差是总体方差的 n n n 分之一。
若将分母中的总体标准差改为样本标准差,则服从自由度为
n
−
1
n-1
n−1 的
t
t
t 分布:
X
ˉ
−
μ
S
/
n
∼
t
(
n
−
1
)
\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1)
S/nXˉ−μ∼t(n−1)
这两个不同处理之下的不同分布,还是需要注意一下。
3.2 关于样本方差的分布
样本方差乘以系数后,服从自由度为
n
−
1
n-1
n−1的卡方分布:
(
n
−
1
)
S
2
σ
2
∼
χ
2
(
n
−
1
)
\frac{(n-1)S^2}{\sigma^2} \sim \chi{2}(n-1)
σ2(n−1)S2∼χ2(n−1)
需要注意的是,这里的自由度是
n
−
1
n-1
n−1,因为这里样本方差是用每个样本减去样本均值。如果改为减去总体均值,其他内容不变,则服从自由度为
n
n
n 的卡方分布。因为样本均值多了一个约束(均值公式),因此自由度少了一个。
3.3 关于样本均值和样本方差的关系
样本均值和样本方差相互独立。
3.4 两个正态总体时,两样本的关系
上面讲到的几个都是在单个正态总体的情况下。当有两个正态总体时,两个样本的方差和两个总体方差有以下分布:
S
1
2
/
S
2
2
σ
1
2
/
σ
2
2
∼
F
(
n
1
−
1
,
n
2
−
1
)
\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1,n_2-1)
σ12/σ22S12/S22∼F(n1−1,n2−1)
即处理后的分布服从
F
F
F分布。
另外,一种特殊情况下,当
σ
1
2
=
σ
2
2
=
σ
2
\sigma_1^2=\sigma_2^2=\sigma^2
σ12=σ22=σ2
则
(
X
ˉ
−
Y
ˉ
)
−
(
μ
1
−
μ
2
)
S
w
1
n
1
+
1
n
2
∼
t
(
n
1
+
n
2
−
2
)
\frac{(\bar{X}-\bar{Y})-( \mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2)
Swn11+n21(Xˉ−Yˉ)−(μ1−μ2)∼t(n1+n2−2)
其中
S
w
2
=
(
n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
n
1
+
n
2
−
2
,
S
w
=
S
w
2
S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2},S_w=\sqrt{S_w^2}
Sw2=n1+n2−2(n1−1)S12+(n2−1)S22,Sw=Sw2
关于卡方分布、t分布、F分布相关的内容就先分享到这里。
参考:
统计学基础之常用统计量和抽样分布
常用的统计量和抽样分布
统计学名词解释 —— 6. 三大抽样分布(卡方分布、t分布、F分布)