【王道书上的代码踩的坑】

王道书上的代码并不是完全版的c代码

今天在写王道书上的代码的时候,给我整的有点不会了,注意王道书上,包括课上的代码并不是完整的c语言代码。而是后缀为cpp的c语言代码, 就是说它有一些cpp才可以实现的功能,如传参引用,for循环中出现参数为变量等等。

C++语言是C语言的超集,也就是说,C++语言支持C语言的所有特性和语法。因此,在.cpp后缀的文件中可以写C代码是因为C++编译器兼容C语言的语法和标准库。

但是书上和课程中并没有说,导致我浪费了一点时间。

下面我举例说明一下:

  • 传参引用
void insert(sqlist &q){...}
这是cpp写法,在c语言中不存在引用传参
int main(){
	sqlist q;
	insert(q);
}
void insert(sqlist *q){ ... }
c语言写法,传递指针
int main(){
	sqlist q;
	insert(&q);
}

综上:如果你想用王道书中的代码实现数据结构,请将代码保存为.cpp的后缀。。我就是脑瘫了,以为是纯c,保存成.c后缀。

<think>好的,我现在需要帮助用户找到关于数据结构中DFS深度优先搜索的代码实现,特别是王道教材中的版本。首先,我需要回忆一下深度优先搜索的基本原理和常见的实现方式。DFS通常用于遍历或搜索图或树的结构,其核心思想是尽可能深地访问节点,直到到达末端,然后回溯并继续探索其他分支。 用户提到了王道教材,所以我应该参考那本书中的典型实现。通常,DFS在图的表示中有两种方式:邻接矩阵和邻接链表。根据用户提供的引用[1],里面有一个DFSTraverse函数的代码,使用的是邻接链表(LGraph)。这说明用户可能对基于邻接链表的实现感兴趣,或者教材中可能采用了这种结构。因此,我应该优先考虑邻接链表的实现方式。 接下来,我需要确保代码符合用户的要求,并且正确无误。引用[1]中的代码展示了如何初始化访问标记数组visited,然后对每个未访问的顶点调用DFS函数。这符合DFS的标准流程,即逐个检查顶点,确保所有连通分量都被访问到。 然后,我需要检查DFS函数本身的实现。虽然用户提供的引用中没有给出DFS函数的具体内容,但根据常见的实现,递归方法是最常见的。递归DFS会访问当前节点,标记为已访问,然后递归访问所有未被访问的邻接节点。因此,我需要补全这部分代码,确保邻接链表的遍历正确。 另外,用户可能希望代码注释详细,结构清晰,以便理解。因此,在代码中加入适当的注释,解释每个步骤的作用,比如顶点标记、递归调用等,是必要的。同时,需要注意变量命名的一致性,比如邻接链表的结构体定义,顶点和边的数量等。 还需要考虑代码的可读性,比如使用有意义的变量名,如G.vertices[i].firstarc来访问邻接链表的第一个边节点。此外,在遍历邻接节点时,通过循环p = p->next来访问所有相邻顶点,直到链表结束,这也是邻接链表的标准遍历方式。 另外,用户提供的引用[3]中提到关于写代码和调试的建议,这可能暗示用户希望代码示例是实际可运行的,或者至少没有明显的错误。因此,我需要确保代码语法正确,比如在C语言中使用正确的指针操作,结构体定义正确,函数参数传递无误。 最后,生成相关问题需要考虑用户可能进一步的需求,比如DFS的应用场景、与非递归实现的对比、时间复杂度分析,以及与BFS的区别等。这些问题可以帮助用户更深入地理解DFS的不同方面,符合用户要求中的“生成相关问题”部分。 总结一下,我需要提供一个基于邻接链表的DFS递归实现,代码结构清晰,注释详细,并参考用户提供的引用中的DFSTraverse函数,确保代码符合王道教材的风格。然后,根据DFS的特点生成相关问题,帮助用户扩展知识。</think>以下是基于邻接链表实现的DFS算法代码(参考王道数据结构教材风格),包含详细注释: ### 深度优先搜索(DFS)实现 ```c // 邻接链表顶点结构 typedef struct ArcNode { int adjvex; // 邻接顶点下标 struct ArcNode *next;// 指向下一邻接顶点的指针 } ArcNode; typedef struct VNode { char data; // 顶点数据 ArcNode *firstarc; // 第一个邻接节点指针 } VNode, AdjList[MAX]; typedef struct { AdjList vertices; // 邻接链表数组 int vexnum, arcnum; // 顶点数和边数 } LGraph; // DFS递归核心算法 void DFS(LGraph G, int v, int visited[]) { visited[v] = 1; // 标记当前顶点已访问 printf("%c ", G.vertices[v].data);// 访问顶点(此处为打印) ArcNode *p = G.vertices[v].firstarc; while (p != NULL) { int w = p->adjvex; // 获取邻接顶点下标 if (!visited[w]) { // 若邻接顶点未访问 DFS(G, w, visited); // 递归访问[^1] } p = p->next; // 继续处理下一个邻接节点 } } // 遍历入口函数 void DFSTraverse(LGraph G) { int visited[MAX] = {0}; // 初始化访问标记数组 printf("DFS遍历序列: "); for (int i = 0; i < G.vexnum; i++) { if (!visited[i]) { // 对每个未访问的连通分量执行DFS DFS(G, i, visited); } } printf("\n"); } ``` ### 关键特性解析 1. **时间复杂度** - 邻接链表:$O(|V|+|E|)$ - 邻接矩阵:$O(|V|^2)$ (V为顶点集合,E为边集合) 2. **空间复杂度** - 递归栈深度:$O(|V|)$(最坏情况) 3. **算法特点** - 通过递归实现"后进先出"的搜索特性 - 使用$visited[]$数组避免重复访问 - 天然适合处理连通分量检测问题
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值