Pytorch2.0、Anaconda安装及Vscode环境搭建(一)

本文详细介绍了PyTorch的安装步骤,包括Anaconda的安装与包管理,CUDA和cuDNN的配置,以及如何在VScode中创建和配置PyTorch开发环境,以支持GPU计算和JupyterNotebook的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、pytorch的介绍及安装


1.1 pytorch的介绍

PyTorch是一个开源的深度学习框架,用于构建、训练和部署深度神经网络。它由Facebook的人工智能研究小组开发并维护,旨在提供灵活性和性能,使研究人员和开发人员能够轻松地创建各种深度学习模型。

1.2 pytorch的安装

PyTorch官网

"Stable"代表当前测试和支持的PyTorch版本,通常适合大多数用户。如果需要每晚生成的最新版本(尚未经过完全测试和支持),您可以选择使用预览版。在安装之前,请确保您已满足先决条件,如安装所需的依赖项(具体要求取决于您的包管理器)。推荐使用Conda作为包管理器,因为它可以管理所有依赖项。另外,如果需要,您还可以安装以前版本的PyTorch。需要注意的是,LibTorch仅适用于C++编程。

这里仅介绍自己使用的Window11+3060显卡的安装思路:


1.2.1 Anaconda的安装

Anaconda附带了一个名为Conda的强大包管理器,它允许用户轻松安装、更新和删除软件包,以及创建和管理多个独立的Python环境。这使得不同项目可以使用不同的库和工具,而不会互相干扰。

官网地址:Anaconda | The World’s Most Popular Data Science Platform

清华源:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

可以直接根据下列教程安装:

Anaconda超详细安装教程(Windows环境下)_conda安装-CSDN博客

输入conda info,如果出现conda信息,则可以进行下一步操作:

image-20230926102254433

这里最好更改一下conda源,后续如果采用conda安装的话,速度会更快一点:

清华源:

在cmd 命令行中,输入添加以下命令

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

查看源:conda config --show,出现下面的内容即成功:

image-20230926102905944


1.2.2 pytorch安装环境搭建

这里有两种创建环境的办法,命令行或者直接anaconda图形化界面

  • 方法一:命令行安装:

在终端输入:

#conda create -n [环境名称] python=[python版本]
conda
<think>好的,我现在需要帮助用户了解如何使用Python配置深度学习环境,包括安装TensorFlow和PyTorch及相关依赖。首先,我应该回顾用户提供的引用资料,看看里面有没有相关的步骤或建议。用户提到了引用[2]和引用[3],其中引用[3]详细介绍了Ubuntu下的环境配置,包括CUDA、cuDNN、Anaconda以及TensorFlow和PyTorch安装。引用[2]则提到了PyTorch安装步骤,可能需要Python 3.6或更高版本。 首先,用户的问题是关于Python环境配置,所以可能需要从Python环境开始。引用[3]中建议使用Anaconda,这能帮助管理不同的虚拟环境,避免依赖冲突。因此,我应该推荐安装Anaconda作为第步。 接下来是安装CUDA和cuDNN,特别是如果用户有NVIDIA GPU的话,这些是必要的。引用[3]里详细说明了安装显卡驱动、CUDA和cuDNN的步骤,但用户可能使用的是不同的操作系统,比如Windows或macOS。不过用户提供的引用主要是Ubuntu的例子,但用户的问题没有明确说明操作系统。可能需要分情况讨论,或者建议用户根据官方文档安装,同时提供通用的步骤。 然后,安装TensorFlow和PyTorch。引用[3]提到了使用conda或pip安装这两个框架,引用[4]提到TensorFlow的tf.keras接口,这可能涉及到安装时的不同版本选择。比如,TensorFlow 2.x和PyTorch的稳定版本。需要确保用户安装时选择正确的版本,并考虑是否需要GPU支持。 另外,依赖项方面,比如安装必要的Python库,如numpy、matplotlib等,这些通常在安装框架时会自动安装,但可能需要单独说明。 用户可能遇到的问题包括CUDA版本与框架版本的兼容性,比如TensorFlow 2.10之后不再支持GPU在Windows上,或者PyTorch需要特定版本的CUDA。因此,在步骤中需要强调检查版本兼容性,并参考官方安装命令。 最后,验证安装是否正确,比如运行简单的代码检查GPU是否被识别。这部分在引用中没有提到,但通常是很重要的步骤,确保切配置正确。 总结步骤应该是: 1. 安装PythonAnaconda 2. 创建虚拟环境 3. 安装CUDA和cuDNN(如果使用GPU) 4. 安装TensorFlow和PyTorch 5. 安装其他依赖库 6. 验证安装 需要注意的是,根据用户的操作系统不同,步骤可能有所变化,但用户提供的引用主要是Ubuntu,所以可能需要以Linux为例,同时提到其他系统的注意事项。例如,在Windows上安装CUDA可能需要从NVIDIA官网下载安装包,而macOS可能不支持GPU加速。 另外,引用[2]提到安装PyTorch的步骤,用户可能需要访问PyTorch官网获取安装命令,而TensorFlow同样需要根据版本选择合适的安装选项。比如,使用pip install tensorflow或pip install tensorflow-gpu(旧版本),但现在TensorFlow的官方版本已经合并了CPU和GPU支持。 在问题生成部分,需要根据配置环境的步骤提出相关问题,比如CUDA安装问题、虚拟环境管理、版本冲突解决等。</think>### 如何使用Python配置深度学习开发环境(含TensorFlow/PyTorch) #### **1. 安装Python环境** - **推荐使用Anaconda**:集成Python和常用科学计算库,支持虚拟环境管理[^3]。 ```bash # 下载Anaconda安装脚本(官网选择对应版本) bash Anaconda3-2023.03-Linux-x86_64.sh ``` - **验证安装**: ```bash conda --version ``` #### **2. 配置GPU支持(可选)** 若使用NVIDIA GPU加速,需安装以下组件: - **显卡驱动**:通过系统软件仓库或NVIDIA官网安装。 - **CUDA Toolkit**:用于GPU并行计算(版本需与深度学习框架兼容)[^3]。 ```bash # 示例:安装CUDA 11.8 wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run sudo sh cuda_11.8.0_520.61.05_linux.run ``` - **cuDNN库**:加速深度学习计算(需注册NVIDIA开发者账号下载)。 #### **3. 创建虚拟环境** 避免依赖冲突,建议为每个项目创建独立环境: ```bash conda create -n dl_env python=3.9 conda activate dl_env ``` #### **4. 安装TensorFlow** - **CPU版本**: ```bash pip install tensorflow ``` - **GPU版本**(需CUDA/cuDNN): ```bash pip install tensorflow[and-cuda] ``` 验证安装: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) # 检查GPU是否识别 ``` #### **5. 安装PyTorch** 根据官网命令选择CUDA版本[^2]: ```bash # 示例:安装PyTorch 2.0 + CUDA 11.8 conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` 验证安装: ```python import torch print(torch.cuda.is_available()) # 输出True表示GPU可用 ``` #### **6. 安装其他依赖库** ```bash pip install numpy matplotlib pandas scikit-learn jupyter ``` #### **7. 开发工具配置** - **PyCharm/VSCode**:关联Anaconda虚拟环境解释器。 - **Jupyter Notebook**: ```bash pip install jupyter jupyter notebook ``` --- ### 版本兼容性参考表 | 框架 | 推荐版本 | CUDA版本 | Python版本 | |-----------|----------|----------|------------| | TensorFlow| 2.12+ | 11.2+ | 3.8-3.10 | | PyTorch | 2.0+ | 11.8+ | 3.8-3.11 | ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃瓜小青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值