Acwing 1047. 糖果(背包DP)

f[i][j]表示挑选前i个物品后,价值%k=j的最大价值

由01背包转移思想,可得转移方程f[i][j]=max(f[i-1][j],f[i-1][((j-w[i])%k+k)%k]+w[i])

注意初始需要将f[0][1~k]置为-INF,初始不能从此状态转移

#include<iostream>
#include<cstring>
using namespace std;
int n,k;
const int INF=0x3f3f3f3f;
int f[105][105],w[105];
int main()
{
	cin>>n>>k;
	for(int i=1;i<=n;i++) cin>>w[i];
	for(int i=1;i<=k;i++) f[0][i]=-INF;
	for(int i=1;i<=n;i++)
		for(int j=0;j<k;j++)
			f[i][j]=max(f[i-1][j],f[i-1][((j-w[i])%k+k)%k]+w[i]);
	cout<<f[n][0];
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vic.GoodLuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值