BFS--A*算法

文章介绍了A*算法如何用于找到从起点到终点的第K短路,通过结合Dijkstra算法反向计算最短距离并使用优先队列优化搜索。此外,还展示了A*算法在解决八数码问题中的应用,利用估价函数计算当前状态与目标状态的曼哈顿距离来找到最短交换路径。
摘要由CSDN通过智能技术生成

A*算法的作用也是压缩搜索空间 

BFS的队列换成优先队列

 估价函数 = 起点到当前点的真实距离+当前点到终点的估计距离 排序

③ 估价函数必须 \leq 真实值


第K短路

178. 第K短路 - AcWing题库

题意:从起点 S 到终点 T 的第 K 短路的长度

思路:首先考虑估价函数,每个点的估价函数设置为已经从起点出发的实际距离+到终点的最短距离,后者反向建图跑dijkstra计算得到,然后使用以估价函数从小到大排序的优先队列进行BFS,当第K次遇到终点时,此时已经从起点出发的实际距离即为第K短路的长度

注意: ①如果起点和终点重合,则求的是第K+1短路,此时最短路为0

            ②如果起点和终点不连通,在Astar中特判,否则会一直搜索所有情况导致超时

//从终点开始反向dijkstra,计算每个点到终点的距离 
void dijkstra(){
	memset(disr,0x3f,sizeof disr); 
	disr[T]=0;
	priority_queue<PII,vector<PII>,greater<PII> > heap;
	heap.push({disr[T],T});
	while(heap.size()){
		PII t=heap.top();heap.pop();
		int distance=t.first,ver=t.second;
		vis[ver]=true;
		for(int i=hr[ver];~i;i=ner[i]){
			int j=er[i];
			if(vis[j]) continue;
			if(disr[j]>distance+wr[i]){
				disr[j]=distance+wr[i];
				heap.push({disr[j],j});
			}
		}
	}
}
//BFS 
int Astar(){
	if(disr[S]==0x3f3f3f3f) return -1;
	priority_queue<PIII,vector<PIII>,greater<PIII> > q;
	int cnt=0;
	q.push({disr[S],{0,S}});
	while(q.size()){
		PIII t=q.top();q.pop();
		int distance=t.second.first,ver=t.second.second;
		if(ver==T){
			cnt++;
			if(cnt==K) return distance;
		}
		for(int i=h[ver];~i;i=ne[i]){
			int j=e[i];
			//估价函数为 到起点的实际距离+到终点的最短距离 
			q.push({distance+w[i]+disr[j],{distance+w[i],j}});
		}
	}
	return -1;
}

八数码

179. 八数码 - AcWing题库

题意:

形如转换成 ,其中X可以和上下左右交换,求所需要的最短交换路径 

思路:估价函数为 当前状态离初始状态走过的距离 加上 当前每个位置离正确位置的曼哈顿距离之和

注意:如果初始状态中逆序对为奇数,则不可能转换到最终状态 

typedef pair<int,pair<string,string> >PISS;
string w=" ";
string ed=" 12345678x";
map<string,bool> vis;
bool check(string str)//偶数逆序对可解
{
	int cnt=0;
	for(int i=1;i<=9;i++)
		for(int j=i+1;j<=9;j++){
			if(str[i]=='x'||str[j]=='x') continue;
			if(str[i]>str[j]) cnt++;	
		}
	if(cnt&1) return false;
	return true;	
} 
int h(string s){
	int d=0;
	for(int i=1;i<=9;i++){
		int x=(i-1)/3+1,y=(i-1)%3+1;
		int c;
		if(isdigit(s[i])) c=s[i]-'0';
		else c=9;
		int xx=(c-1)/3+1,yy=(c-1)%3+1;
		d+=abs(x-xx)+abs(y-yy);
	}
	return d;
}
string Astar(){
	priority_queue<PISS,vector<PISS>,greater<PISS> > q;
	q.push({h(w),{"",w}});
	vis[w]=true;
	while(!q.empty()){
		PISS t=q.top();q.pop();
		string path=t.second.first;
		string ver=t.second.second;
		if(ver==ed){
			return path;
		}
		int pos;
		for(int i=1;i<=9;i++){
			if(ver[i]=='x'){
				pos=i;
				break;
			}
		}
		int x=(pos-1)/3+1,y=(pos-1)%3+1;
		if(x>=2){
			string tmp=ver;
			swap(tmp[pos],tmp[pos-3]);
			if(!vis[tmp]){
				vis[tmp]=true;
				q.push({path.length()+h(tmp),{path+"u",tmp}});
			}
		}
		if(x<=2){
			string tmp=ver;
			swap(tmp[pos],tmp[pos+3]);
			if(!vis[tmp]){
				vis[tmp]=true;
				q.push({path.length()+h(tmp),{path+"d",tmp}});
			}
		}
		if(y>=2){
			string tmp=ver;
			swap(tmp[pos],tmp[pos-1]);
			if(!vis[tmp]){
				vis[tmp]=true;
				q.push({path.length()+h(tmp),{path+"l",tmp}});
			}
		}
		if(y<=2){
			string tmp=ver;
			swap(tmp[pos],tmp[pos+1]);
			if(!vis[tmp]){
				vis[tmp]=true;
				q.push({path.length()+h(tmp),{path+"r",tmp}});
			}
		}
	}
}
int main(){
	for(int i=1;i<=9;i++){
		char c;cin>>c;
		w+=c;
	}
	if(!check(w)){
		cout<<"unsolvable";
		return 0;
	}
	cout<<Astar();
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vic.GoodLuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值