参数少、迭代次数少的优化算法

在机器学习和深度学习的实践中,优化算法的选择对于模型的训练速度和效果至关重要。有些优化算法需要调整的参数较少,且能在较短的迭代次数内达到良好的收敛效果。本文将介绍两种参数较少且通常能快速收敛的优化算法:随机梯度下降(Stochastic Gradient Descent, SGD)和Adam优化算法。

1. 随机梯度下降(SGD)

公式解释

随机梯度下降算法是对标准梯度下降算法的一个改进,它在每次迭代中只使用一个样本来计算梯度,而不是使用全部样本。这使得SGD的计算速度更快,并且有可能跳出局部最小值。SGD的更新公式如下:

[
\theta = \theta - \alpha \cdot \nabla J(\theta; x^{(i)}, y^{(i)})
]

其中,(x^{(i)}) 和 (y^{(i)}) 是训练集中的单个样本和其标签,(\alpha) 是学习率,(\nabla J(\theta; x^{(i)}, y^{(i)})) 是损失函数关于参数 (\theta) 的梯度。

应用场景

SGD在大型数据集上特别有用,因为它不需要在每次迭代中加载整个数据集。这使得SGD在内存使用和计算效率上更具优势。然而,由于SGD每次只使用一个样本,其更新方向可能更加不稳定,可能需要更精细的学习率调整和更多的迭代次数。

示例代码(使用PyTorch)
import torch  
import torch.optim as optim  
  
# 假设已经定义了一个模型model和数据加载器data_loader  
  
# 使用SGD优化器,学习率设置为0.01  
optimizer = optim.SGD(model.parameters(), lr=0.01)  
  
# 训练模型  
for epoch in range(num_epochs):  
    for inputs, targets in data_loader:  
        # 前向传播  
        outputs = model(inputs)  
        loss = criterion(outputs, targets)  
          
        # 反向传播和优化  
        optimizer.zero_grad()  # 清零梯度缓存  
        loss.backward()  # 反向传播计算梯度  
        optimizer.step()  # 使用SGD更新参数

2. Adam优化算法

公式解释

Adam优化算法结合了Momentum和RMSprop两种算法的思想,通过计算梯度的一阶矩估计和二阶矩估计来动态调整每个参数的学习率。Adam的更新公式如下:

[
m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t
]
[
v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2
]
[
\hat{m}_t = \frac{m_t}{1 - \beta_1^t}
]
[
\hat{v}t = \frac{v_t}{1 - \beta_2^t}
]
[
\theta
{t+1} = \theta_t - \frac{\alpha}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t
]

其中,(g_t) 是当前梯度,(m_t) 和 (v_t) 分别是梯度的一阶矩(平均值)和二阶矩(未中心化的方差)的估计,(\beta_1) 和 (\beta_2) 是矩估计的指数衰减率,(\alpha) 是学习率,(\epsilon) 是一个很小的常数,用于防止除以零。

应用场景

Adam优化算法在大多数情况下都能取得良好的性能,特别是在处理非平稳目标和带噪声的问题时。由于其自适应学习率调整的特性,Adam通常不需要精细调整学习率,且收敛速度较快。

示例代码(使用PyTorch)
import torch  
import torch.optim as optim  
  
# 假设已经定义了一个模型model和数据加载器data_loader  
  
# 使用Adam优化器,学习率设置为0.001  
optimizer = optim.Adam(model.parameters(), lr=0.001)  
  
# 训练模型  
for epoch in range(num_epochs):  
    for inputs, targets in data_loader:  
        # 前向传播  
        outputs = model(inputs)  
        loss = criterion(outputs, targets)  
          
        # 反向传播和优化  
        optimizer.zero_grad()  # 清零梯度缓存  
        loss.backward()  # 反向传播计算梯度  
        optimizer.step()  # 使用Adam更新参数

这两种优化算法都相对简单,参数较少,且通常能在较少的迭代次数内达到收敛。在实际应用中,可以根据问题的特点和需求选择合适的优化算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员杨弋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值