自适应近邻图学习问题建模公式解析

内容出处:《多视角数据聚类研究》,作者王浩。
在这里插入图片描述

这张图片展示的是一个数学公式,它是一个优化问题的目标函数。这个目标函数由两部分组成:

  • 第一部分是样本点之间的距离平方之和
  • 第二部分是对所有样本点的类别标签进行L1范数惩罚。

这个公式通常用于聚类任务,特别是对于稀疏表示聚类(Sparse Representation Clustering, SRC)。

具体来说,这个公式可以这样解读:

  • ∑ i , j = 1 n ∥ x i − x j ∥ 2 2 s i j 是第一部分,其中 x i 和 x j 分别代表矩阵 X 中的第 i 个和第 j 个列向量, s i j 表示 X 矩阵中第 i 个和第 j 个的列向量的相似性。这里求和的是所有样本点之间距离的平方 ( 欧氏距离的计算公式,也就是 L 2 范数 ) 乘以其对应的相似性。 \displaystyle\sum_{i,j=1}^{n} ∥x_i - x_j∥_2^2 s_{ij}是第一部分,其中 x_i 和 x_j分别代表矩阵X中的第 i 个和第 j 个列向量,s_{ij} 表示X矩阵中第 i 个和第 j 个的列向量的相似性。这里求和的是所有样本点之间距离的平方(欧氏距离的计算公式,也就是L2范数)乘以其对应的相似性。 i,j=1nxixj22sij是第一部分,其中xixj分别代表矩阵X中的第i个和第j个列向量,sij表示X矩阵中第i个和第j个的列向量的相似性。这里求和的是所有样本点之间距离的平方(欧氏距离的计算公式,也就是L2范数)乘以其对应的相似性。

  • α ∑ v = 1 m ∑ i = 1 n ∥ s i ∥ 1 是第二部分,其中 α 是一个正则化参数,用来控制 L 1 范数惩罚的程度; m 是类别数量, n 是样本数量; s i 表示 S 矩阵中的第 i 个列向量。这里求和的是所有类别列向量的 L 1 范数,也就是所有类别列向量的绝对值之和。 α \displaystyle\sum_{v=1}^{m}\displaystyle\sum_{i=1}^{n} ∥s_i∥_1 是第二部分,其中 α 是一个正则化参数,用来控制 L1 范数惩罚的程度;m 是类别数量,n 是样本数量;s_i 表示S矩阵中的第 i 个列向量。 这里求和的是所有类别列向量的 L1 范数,也就是所有类别列向量的绝对值之和。 αv=1mi=1nsi1是第二部分,其中α是一个正则化参数,用来控制L1范数惩罚的程度;m是类别数量,n是样本数量;si表示S矩阵中的第i个列向量。这里求和的是所有类别列向量的L1范数,也就是所有类别列向量的绝对值之和。

整个目标函数是要找到一个最优的矩阵 s,使得样本点之间的距离平方之和尽可能小,同时类别列向量的 L1 范数尽可能大。这可以通过求解以下优化问题得到:

m i n s f ( s ) = ∑ i , j = 1 n ∥ x i − x j ∥ 2 2 s i j + α ∑ v = 1 m ∑ i = 1 n ∥ s i ∥ 1 min_sf(s) = \displaystyle\sum_{i,j=1}^{n} ∥x_i - x_j∥_2^2 s_{ij}+ α \displaystyle\sum_{v=1}^{m}\displaystyle\sum_{i=1}^{n} ∥s_i∥_1 minsf(s)=i,j=1nxixj22sij+αv=1mi=1nsi1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值