内容出处:《多视角数据聚类研究》,作者王浩。
这张图片展示的是一个数学公式,它是一个优化问题的目标函数。这个目标函数由两部分组成:
- 第一部分是样本点之间的距离平方之和
- 第二部分是对所有样本点的类别标签进行L1范数惩罚。
这个公式通常用于聚类任务,特别是对于稀疏表示聚类(Sparse Representation Clustering, SRC)。
具体来说,这个公式可以这样解读:
-
∑ i , j = 1 n ∥ x i − x j ∥ 2 2 s i j 是第一部分,其中 x i 和 x j 分别代表矩阵 X 中的第 i 个和第 j 个列向量, s i j 表示 X 矩阵中第 i 个和第 j 个的列向量的相似性。这里求和的是所有样本点之间距离的平方 ( 欧氏距离的计算公式,也就是 L 2 范数 ) 乘以其对应的相似性。 \displaystyle\sum_{i,j=1}^{n} ∥x_i - x_j∥_2^2 s_{ij}是第一部分,其中 x_i 和 x_j分别代表矩阵X中的第 i 个和第 j 个列向量,s_{ij} 表示X矩阵中第 i 个和第 j 个的列向量的相似性。这里求和的是所有样本点之间距离的平方(欧氏距离的计算公式,也就是L2范数)乘以其对应的相似性。 i,j=1∑n∥xi−xj∥22sij是第一部分,其中xi和xj分别代表矩阵X中的第i个和第j个列向量,sij表示X矩阵中第i个和第j个的列向量的相似性。这里求和的是所有样本点之间距离的平方(欧氏距离的计算公式,也就是L2范数)乘以其对应的相似性。
-
α ∑ v = 1 m ∑ i = 1 n ∥ s i ∥ 1 是第二部分,其中 α 是一个正则化参数,用来控制 L 1 范数惩罚的程度; m 是类别数量, n 是样本数量; s i 表示 S 矩阵中的第 i 个列向量。这里求和的是所有类别列向量的 L 1 范数,也就是所有类别列向量的绝对值之和。 α \displaystyle\sum_{v=1}^{m}\displaystyle\sum_{i=1}^{n} ∥s_i∥_1 是第二部分,其中 α 是一个正则化参数,用来控制 L1 范数惩罚的程度;m 是类别数量,n 是样本数量;s_i 表示S矩阵中的第 i 个列向量。 这里求和的是所有类别列向量的 L1 范数,也就是所有类别列向量的绝对值之和。 αv=1∑mi=1∑n∥si∥1是第二部分,其中α是一个正则化参数,用来控制L1范数惩罚的程度;m是类别数量,n是样本数量;si表示S矩阵中的第i个列向量。这里求和的是所有类别列向量的L1范数,也就是所有类别列向量的绝对值之和。
整个目标函数是要找到一个最优的矩阵 s,使得样本点之间的距离平方之和尽可能小,同时类别列向量的 L1 范数尽可能大。这可以通过求解以下优化问题得到:
m i n s f ( s ) = ∑ i , j = 1 n ∥ x i − x j ∥ 2 2 s i j + α ∑ v = 1 m ∑ i = 1 n ∥ s i ∥ 1 min_sf(s) = \displaystyle\sum_{i,j=1}^{n} ∥x_i - x_j∥_2^2 s_{ij}+ α \displaystyle\sum_{v=1}^{m}\displaystyle\sum_{i=1}^{n} ∥s_i∥_1 minsf(s)=i,j=1∑n∥xi−xj∥22sij+αv=1∑mi=1∑n∥si∥1