基于多核学习的多视图学习——半无穷线性规划(Semi-Infinite Linear Programming, SILP)

半无穷线性规划(Semi-Infinite Linear Programming, SILP)是一种特殊的线性规划问题,它区别于标准的有限维线性规划问题,因为在约束条件中可能包含无限多个不等式约束

具体来说,SILP 可以被描述为具有有限个变量但无限多个约束的问题

这类问题在工程设计、经济模型以及某些物理问题中经常出现。

标准形式

SILP 的标准形式通常写作:

minimize  c T x subject to  a i T x ≤ b i , i ∈ I , \text{minimize } c^Tx \\ \text{subject to } a_i^T x \leq b_i, \quad i \in I, minimize cTxsubject to aiTxbi,iI,
其中 I I I 可以是无限集。

但在更常见的表示中,SILP 被写作:

minimize  c T x subject to  g ( x , t ) ≤ 0 , ∀ t ∈ T , \text{minimize } c^Tx \\ \text{subject to } g(x,t) \leq 0, \quad \forall t \in T, minimize cTxsubject to g(x,t)0,tT,
其中 g ( x , t ) g(x,t) g(x,t) 是关于决策变量 x x x 和参数 t t t 的函数,而 T T T 是参数 t t t 的无限集合。

解释

  • c c c : 目标函数的系数向量,决定了目标函数的方向和权重。
  • x x x : 决策变量向量,我们试图找到最优解的未知向量。
  • T T T : 参数集合,通常是无限的,用于描述无限数量的约束。
  • g ( x , t ) g(x,t) g(x,t) : 关于决策变量 x x x 和参数 t t t 的函数,它指定了每个约束的条件,对于 T T T 中的所有 t t t g ( x , t ) g(x,t) g(x,t) 必须小于等于零。

举例说明

假设我们有一个简单的 SILP 问题:

minimize  x 1 + 2 x 2 subject to  x 1 + t x 2 ≤ 1 , ∀ t ∈ [ 0 , ∞ ) , \text{minimize } x_1 + 2x_2 \\ \text{subject to } x_1 + tx_2 \leq 1, \quad \forall t \in [0, \infty), minimize x1+2x2subject to x1+tx21,t[0,),
在这个例子中,

  • c = [ 1 2 ] c = \begin{bmatrix} 1 \\ 2 \end{bmatrix} c=[12] 是目标函数的系数向量。
  • x = [ x 1 x 2 ] x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x=[x1x2] 是决策变量向量。
  • T = [ 0 , ∞ ) T = [0, \infty) T=[0,) 是参数 t t t 的无限集合。
  • g ( x , t ) = x 1 + t x 2 − 1 g(x,t) = x_1 + tx_2 - 1 g(x,t)=x1+tx21约束函数,它必须小于等于零对于所有 t ∈ T t \in T tT

求解方法

由于 SILP 包含无限个约束,传统的线性规划方法无法直接适用。

解决 SILP 问题的方法通常涉及使用特殊的算法,如外逼近法(Outer Approximation)、列生成法(Column Generation)和切割平面法(Cutting Plane Method)。这些方法通过逐步逼近问题的可行域来寻找最优解。

请注意,虽然 SILP 在数学上可以非常复杂,但许多实际问题可以通过适当的建模技巧转换为可处理的形式,使得可以使用现有的优化软件包来解决它们。例如,lp_solve 和其他线性规划求解器可能提供特定功能来处理 SILP 类型的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值