半无穷线性规划(Semi-Infinite Linear Programming, SILP)是一种特殊的线性规划问题,它区别于标准的有限维线性规划问题,因为在约束条件中可能包含无限多个不等式约束
。
具体来说,SILP 可以被描述为具有有限个变量但无限多个约束的问题
。
这类问题在工程设计、经济模型以及某些物理问题中经常出现。
标准形式
SILP 的标准形式通常写作:
minimize
c
T
x
subject to
a
i
T
x
≤
b
i
,
i
∈
I
,
\text{minimize } c^Tx \\ \text{subject to } a_i^T x \leq b_i, \quad i \in I,
minimize cTxsubject to aiTx≤bi,i∈I,
其中
I
I
I 可以是无限集。
但在更常见的表示中,SILP 被写作:
minimize
c
T
x
subject to
g
(
x
,
t
)
≤
0
,
∀
t
∈
T
,
\text{minimize } c^Tx \\ \text{subject to } g(x,t) \leq 0, \quad \forall t \in T,
minimize cTxsubject to g(x,t)≤0,∀t∈T,
其中
g
(
x
,
t
)
g(x,t)
g(x,t) 是关于决策变量
x
x
x 和参数
t
t
t 的函数,而
T
T
T 是参数
t
t
t 的无限集合。
解释
- c c c : 目标函数的系数向量,决定了目标函数的方向和权重。
- x x x : 决策变量向量,我们试图找到最优解的未知向量。
- T T T : 参数集合,通常是无限的,用于描述无限数量的约束。
- g ( x , t ) g(x,t) g(x,t) : 关于决策变量 x x x 和参数 t t t 的函数,它指定了每个约束的条件,对于 T T T 中的所有 t t t , g ( x , t ) g(x,t) g(x,t) 必须小于等于零。
举例说明
假设我们有一个简单的 SILP 问题:
minimize
x
1
+
2
x
2
subject to
x
1
+
t
x
2
≤
1
,
∀
t
∈
[
0
,
∞
)
,
\text{minimize } x_1 + 2x_2 \\ \text{subject to } x_1 + tx_2 \leq 1, \quad \forall t \in [0, \infty),
minimize x1+2x2subject to x1+tx2≤1,∀t∈[0,∞),
在这个例子中,
- c = [ 1 2 ] c = \begin{bmatrix} 1 \\ 2 \end{bmatrix} c=[12] 是目标函数的系数向量。
- x = [ x 1 x 2 ] x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x=[x1x2] 是决策变量向量。
- T = [ 0 , ∞ ) T = [0, \infty) T=[0,∞) 是参数 t t t 的无限集合。
-
g
(
x
,
t
)
=
x
1
+
t
x
2
−
1
g(x,t) = x_1 + tx_2 - 1
g(x,t)=x1+tx2−1 是
约束函数
,它必须小于等于零对于所有 t ∈ T t \in T t∈T 。
求解方法
由于 SILP 包含无限个约束,传统的线性规划方法无法直接适用。
解决 SILP 问题的方法通常涉及使用特殊的算法,如外逼近法(Outer Approximation)、列生成法(Column Generation)和切割平面法(Cutting Plane Method)。
这些方法通过逐步逼近问题的可行域来寻找最优解。
请注意,虽然 SILP 在数学上可以非常复杂,但许多实际问题可以通过适当的建模技巧转换为可处理的形式,使得可以使用现有的优化软件包来解决它们。例如,lp_solve 和其他线性规划求解器可能提供特定功能来处理 SILP 类型的问题。