Transformer实战-系列教程16:DETR 源码解读3(位置编码:Joiner类/PositionEmbeddingSine类)

本文详细解读了DETR算法的源码,重点介绍了Joiner类和PositionEmbeddingSine类,以及Transformer编码器和解码器的相关实现,展示了Transformer在DETR中的关键角色和位置编码在图像识别中的作用。
摘要由CSDN通过智能技术生成

🚩🚩🚩Transformer实战-系列教程总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传
点我下载源码

DETR 算法解读
DETR 源码解读1(项目配置/CocoDetection类/ConvertCocoPolysToMask类)
DETR 源码解读2(DETR类)
DETR 源码解读3(位置编码:Joiner类/PositionEmbeddingSine类)
DETR 源码解读4(BackboneBase类/Backbone类)
DETR 源码解读5(Transformer类)
DETR 源码解读6(编码器:TransformerEncoder类/TransformerEncoderLayer类)
DETR 源码解读7(解码器:TransformerDecoder类/TransformerDecoderLayer类)
DETR 源码解读8(训练函数/损失函数)

5、Joiner类

位置:models/backbone.py/Joiner类

class Joiner(nn.Sequential):
    def __init__(self, backbone, position_embedding):
        super().__init__(backbone, position_embedding)
    def forward(self, tensor_list: NestedTensor):
        xs = self[0](tensor_list)
        out: List[NestedTensor] = []
        pos = []
        for name, x in xs.items():
            out.append(x)
            pos.append(self[1](x).to(x.tensors.dtype))
        return out, pos
  1. 定义Joiner类,继承自PyTorch的nn.Sequential
  2. 构造函数
  3. 初始化
  4. 前向传播函数,接收一个类型为NestedTensor的参数tensor_list
  5. xs,self[0] 指的是nn.Sequential容器中的第一个模块,根据__init__方法中的定义,这是backbone模块。所以,self[0](tensor_list)表示对输入的tensor_list执行backbone模块的前向传播
  6. 初始化一个空列表out,用于存储backbone输出的特征
  7. pos = []**:初始化一个空列表pos,用于存储由position_embedding`生成的位置编码
  8. 遍历xs
  9. 将当前层的输出x添加到out列表中
  10. self[1] 指的是nn.Sequential容器中的第二个模块,根据初始化时的顺序,这是position_embedding模块。因此,self[1](x)表示对backbone的输出x执行position_embedding模块的前向传播
  11. out、pos

6、PositionEmbeddingSine类

位置:models/position_encoding.py/PositionEmbeddingSine类

DETR提供了两种位置编码方式,一种是和Transformer一样的正余弦,另一种是可学习的位置编码方式,下面是和Transformer一样的正余弦

P E p o s , 2 i = s i n ( p o s / 1000 0 2 i / d m o d e l ) PE_{pos,2i} = sin(pos/10000^{2i/d_{model}}) PEpos,2i=sin(pos/100002i/dmodel)
P E p o s , 2 i + 1 = c o s ( p o s / 1000 0 2 i / d m o d e l ) PE_{pos,2i+1} = cos(pos/10000^{2i/d_{model}}) PEpos,2i+1=cos(pos/100002i/dmodel)

6.1 构造函数

class PositionEmbeddingSine(nn.Module):
    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale
  1. 继承nn.Module的类
  2. 构造函数
  3. 初始化
  4. num_pos_feats ,每个位置特征数量的一般
  5. temperature ,缩放因子,用于调整位置编码的频率
  6. normalize ,是否对位置坐标进行归一化
  7. scale,在归一化位置坐标时使用的额外缩放因子
  8. 验证scale和normalize参数的兼容性
  9. 设置scale的默认值为2 * math.pi,如果未提供

6.2 前向传播

    def forward(self, tensor_list: NestedTensor):
        x = tensor_list.tensors
        mask = tensor_list.mask
        assert mask is not None
        not_mask = ~mask
        y_embed = not_mask.cumsum(1, dtype=torch.float32)
        x_embed = not_mask.cumsum(2, dtype=torch.float32)
        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos
  1. 前向传播函数
  2. x,从tensor_list提取张量,torch.Size([2, 2048, 25, 29]),2是batch,2048是一个像素点的特征向量维度,后面是特征图长宽
  3. mask ,从tensor_list提取掩码,torch.Size([2, 25, 29]),这里面存储的全是bool值,如果是True表示的是一个实际的特征,如果是False表示的是padding出来的
  4. 确认mask 存在
  5. 通过对掩码取反获取非掩码区域,这里非掩码区域指的是图像的有效部分
  6. y_embed,行方向上的累积和,用于生成位置编码,torch.Size([2, 25, 29]),mask为True的就加1,mask为false的就不用加了
  7. x_embed,列方向上的累积和,用于生成位置编码,torch.Size([2, 25, 29])
  8. 如果启用了归一化
  9. 一个很小的数,防止出现除以0
  10. 对y_embed和
  11. x_embed进行归一化并应用缩放因子self.scale,self.scale表示缩放0到2π的角度中,方便进行正余弦的计算
  12. dim_t ,torch.Size([128]),生成一个维度张量dim_t,表示位置编码每个位置都要生成128维的向量
  13. dim_t ,torch.Size([128]),根据temperature和num_pos_feats调整其值
  14. pos_x ,对x_embed应用缩放,torch.Size([2, 25, 29, 128])
  15. pos_y ,对y_embed应用缩放,准备生成正弦和余弦编码,torch.Size([2, 25, 29, 128])
  16. pos_x ,分别计算所有偶数位置的正弦值和所有奇数位置的余弦值,将正弦值和余弦值沿着新的维度堆叠起来,将堆叠后的维度(正弦和余弦值对)展平,torch.Size([2, 25, 29, 128])
  17. pos_y ,torch.Size([2, 25, 29, 128])
  18. pos ,将pos_y和pos_x在第3维上进行拼接,形成完整的位置编码,torch.Size([2, 256, 25, 29])
  19. 返回pos

通过这种方式,PositionEmbeddingSine类为每个像素位置生成了一个独特的编码,这个编码通过正弦和余弦函数的交替使用捕获了空间位置信息。正弦和余弦函数的周期性和连续性特点使得这种编码非常适合表示位置关系,有助于提高模型对图像空间信息的理解和处理能力

DETR 算法解读
DETR 源码解读1(项目配置/CocoDetection类/ConvertCocoPolysToMask类)
DETR 源码解读2(DETR类)
DETR 源码解读3(位置编码:Joiner类/PositionEmbeddingSine类)
DETR 源码解读4(BackboneBase类/Backbone类)
DETR 源码解读5(Transformer类)
DETR 源码解读6(编码器:TransformerEncoder类/TransformerEncoderLayer类)
DETR 源码解读7(解码器:TransformerDecoder类/TransformerDecoderLayer类)
DETR 源码解读8(训练函数/损失函数)

Transformer在许多NLP(自然语言处理)任务中取得了最先进的成果。 DETR(Detection Transformer)是Facebook提出的基于Transformer的端到端目标检测方法。DETR使用CNN+Transformer进行图像目标检测,该方法没有NMS后处理步骤、没有anchor。DETR总体思路是把目标检测看成一个set prediction的问题,并且使用Transformer来预测物体边界框的集合。本课程对DETR的原理与PyTorch实现代码进行精讲,来帮助大家掌握其详细原理和具体实现。 原理精讲部分包括:Transformer的架构概述、Transformer的EncoderTransformer的DecoderDETR网络架构、DETR损失函数、DETR实验结果和分析。  代码精讲部分使用Jupyter Notebook对DETRPyTorch代码进行逐行解读,包括:安装PyTorchDETR官方Demo,DETR的hands-on tutorial,DETR的代码精讲(数据准备、Backbone和位置编码Transformer架构的实现)。相关课程: 《Transformer原理与代码精讲(PyTorch)》https://edu.csdn.net/course/detail/36697《Transformer原理与代码精讲(TensorFlow)》https://edu.csdn.net/course/detail/36699《ViT(Vision Transformer)原理与代码精讲》https://edu.csdn.net/course/detail/36719《DETR原理与代码精讲》https://edu.csdn.net/course/detail/36768《Swin Transformer实战目标检测:训练自己的数据集》https://edu.csdn.net/course/detail/36585《Swin Transformer实战实例分割:训练自己的数据集》https://edu.csdn.net/course/detail/36586《Swin Transformer原理与代码精讲》 https://download.csdn.net/course/detail/37045
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习杨卓越

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值