《FLAME: Taming Backdoors in Federated Learning》论文略读

研一渣硕一枚,最近在调研联邦学习中的安全隐私问题。论文胡乱看了几十篇,深感前看后忘,不成体系。潦草写一点笔记,希望有所助益。

来源

USENIX 2022  代码论文:zhmzm/FLAME (github.com)

问题挑战

联邦学习易于收到后门攻击影响,现有的方法主要有检测恶意更新和加噪两种。前者仅能应用于有限的攻击模型,后者对模型原始任务影响较大。因此,提出一种有效的,不影响模型原始任务的,与数据分布和攻击方法无关的防御手段是非常必要的。

后门攻击过程示意图
​​​​​

防御方法

直觉

            

更新的梯度通常包括两个维度:方向和长度。前者可以用余弦相似度衡量,后者L2范数衡量。

余弦相似度计算公式
余弦相似度衡量方向一致性
​​
L2范数衡量长度一致性

图中,同时也展示了三种不同类型的后门:

框架结构

  1. 聚合前去除潜在的中毒更新值(针对梯度方向扰动后门); 使用动态聚类HDBSCAN方法
  2. 聚合前进行模型权重裁剪(针对梯度数值扰动后门);
  3. 聚合时在模型更新中加入噪声(针对隐蔽后门)。

前两步操作,可以减少第三步操作所需引入的噪声大小。同时,作者给出了一个理论边界证明。

攻击者能力

        假设攻击者A有不多于一半用户的模型和本地训练数据的控制权限。攻击者知道模型的聚合方式和潜在的后门防御方法。

实验

 攻击方法:

How To Backdoor Federated Learning》,《Attack of the tails: Yes, you really can backdoor federated learning》,《DBA: Distributed Backdoor Attacks against Federated Learning.》

  任务:

        单词预测,图像分类,IoTa干扰检测。 100个参与方,25%恶意(比例是否过高?)。

  数据集:

   评价指标:

        后门准确度(BA),主任务准确度(MA)

   基准:

        Krum, FoolsGold, Auror, Adaptive Federated Averaging (AFA) , Median 和
 generalized differential privacy (DP) .

   实验结果:

        

        在作者选定的数据集中FLAME的后门去除效果极好,甚至会提升主任务的准确度,可能是因为减轻了过拟合?

小结

        实现细节没有太仔细去看,技术上没有太多新东西,场景更加现实,考虑了自适应后门攻击。文章写的条理清晰、逻辑自洽,看得非常舒服。

如果有什么写的不对之处,或者总结不到位的地方,欢迎批评指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值