AcWing 1171. 距离 tarjan & 倍增

题目描述
给出 n 个点的一棵树,多次询问两点之间的最短距离。

注意:

边是无向的。
所有节点的编号是 1,2,…,n。
输入格式
第一行为两个整数 n 和 m。n 表示点数,m 表示询问次数;

下来 n−1 行,每行三个整数 x,y,k,表示点 x 和点 y 之间存在一条边长度为 k;

再接下来 m 行,每行两个整数 x,y,表示询问点 x 到点 y 的最短距离。

树中结点编号从 1 到 n。

输出格式
共 m 行,对于每次询问,输出一行询问结果。

数据范围
2≤n≤104,
1≤m≤2×104,
0<k≤100,
1≤x,y≤n
输入样例1:

2 2 
1 2 100 
1 2 
2 1

输出样例1:

100
100

输入样例2:

3 2
1 2 10
3 1 15
1 2
3 2

输出样例2:

10
25

思路:
使用tarjan算法。
将所有的点通过st数组分成三类,分别为0,1,2;

  1. 未涉及到的点
  2. 正在访问的节点
  3. 已经访问过的节点(此时,该节点已通过并查集合并到最近公共祖先节点所在集合,最近公共祖先为代表元素)

首先先用bfs初始化每个节点到根节点的距离。
使用tarjan算法:

  • 将正在搜索的节点即root标记为1
  • 本质上为dfs,去dfs所有的邻接点。此步骤完成后,root的子树节点均已被标记为2。
  • 去遍历与root节点所有相关的查询。
    • 若另外一个节点已被标记为2(即已被归并到共同节点)那么最近公共祖先就为find
    • 否则跳过

代码:

#include<iostream>
#include<vector>
#include<cstring>
using namespace std;
typedef pair<int, int>PII;
const int N = 1e6 + 10;
int fa[N];
int e[N], ne[N], w[N], h[N],idx = 0;
int res[N];
int dist[N];
int st[N];
vector<PII>q[N];
void add(int a, int b, int c)
{
	w[idx] = c;
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx++;
}
int find(int x)
{
	if (fa[x] != x) fa[x] = find(fa[x]);
	return fa[x];
}
void bfs(int u,int Fa)
{
	for (int i = h[u]; i != -1; i = ne[i])
	{
		int j = e[i];
		if (j != Fa)
		{
			dist[j] = dist[u] + w[i];
			bfs(j,u);
		}
	}
}
void tarjan(int root)
{
	st[root] = 1;
	for (int i = h[root]; i != -1; i = ne[i])
	{
		int j = e[i];
		if (st[j] == 0)
		{
			tarjan(j);
			fa[j] = root;
		}
	}

	for (auto p : q[root])
	{
		int a = p.first;
		int b = p.second;
		if (st[a] == 2)
		{
			int anc = find(a);
			res[b] = dist[root] + dist[a] - dist[anc] * 2;
		}
	}
	st[root] = 2;
}
int main()
{
	memset(st, 0, sizeof st);
	memset(h, -1, sizeof h);
	int n;
	cin >> n;
	int m;
	cin >> m;
	for (int i = 0; i < N; i++)
	{
		fa[i] = i;
	}
	for (int i = 0; i < n - 1; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		add(a, b, c);
		add(b, a, c);
	}
	for (int i = 0; i < m; i++)
	{
		int a, b;
		cin >> a >> b;
		if (a != b)
		{
			q[a].push_back({ b, i });
			q[b].push_back({ a, i });
		}
	}
	bfs(1,-1);
	tarjan(1);
	for (int i = 0; i < m; i++)
	{
		cout << res[i] << endl;
	}
	return 0;
}

附:倍增算法

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int N = 1e6 + 10;
int e[N], ne[N], w[N], h[N],idx = 0;
int depth[N];
int dist[N];
int fa[N][17];
void add(int a, int b,int c)
{
	w[idx] = c;
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx++;
}
void bfs(int root)
{
	dist[root] = 0;
	depth[root] = 1;
	depth[0] = 0;
	queue<int>q;
	q.push(root);
	while (!q.empty())
	{
		int t = q.front();
		q.pop();
		for (int i = h[t]; i != -1; i = ne[i])
		{
			int j = e[i];
			if (depth[j] > depth[t] + 1)
			{
				dist[j] = dist[t] + w[i];
				depth[j] = depth[t] + 1;
				q.push(j);
				fa[j][0] = t;
				for (int k = 1; k < 16; k++)
				{
					fa[j][k] = fa[fa[j][k - 1]][k - 1];
				}
			}
		}
	}
}
int lca(int a,int b)
{
	if (depth[a] < depth[b])
	{
		swap(a, b);
	}
	for (int k = 16; k >= 0; k--)
	{
		if (depth[fa[a][k]] >= depth[b])
		{
			a = fa[a][k];
		}
	}
	if (a == b)
	{
		return a;
	}
	for (int k = 16; k >= 0; k--)
	{
		if (fa[a][k] != fa[b][k])
		{
			a = fa[a][k];
			b = fa[b][k];
		}
	}
	return fa[a][0];
}
int main()
{
	memset(h, -1, sizeof h);
	memset(depth, 0x3f3f3f3f, sizeof depth);
	memset(dist, 0x3f3f3f3f, sizeof dist);
	int n, m;
	cin >> n >> m;
	for (int i = 0; i < n - 1; i++)
	{
		int a, b,c;
		cin >> a >> b>>c;
		add(a, b,c);
		add(b, a,c);
	}
	bfs(1);
	for (int i = 0; i < m; i++)
	{
		int a, b;
		cin >> a >> b;
		int anc=lca(a, b);
		cout << dist[a] + dist[b] - dist[anc] * 2<<endl;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值