# main.py
import torch
import argparse
import torch.distributed as dist
from apex.parallel import DistributedDataParallel
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
args = parser.parse_args()
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
train_dataset = ...
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
model = ...
model.cuda()
model, optimizer = amp.initialize(model, optimizer)
model = DistributedDataParallel(model)
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda()
target = target.cuda()
...
output = model(images)
loss = criterion(output, target)
optimizer.zero_grad()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
多卡训练模板,命令行启动方法
代码中设置os.environ["CUDA_VISIBLE_DEVICES"]='0,1'
命令行:torchrun --nproc_per_node=4 main.py
如果要调用model中的init方法,要把
model._init_hidden_state(num_sample)改成
model.module._init_hidden_state(num_sample)
这是用apex库调用多卡训练的方法