Pytorch实现简单线性回归Demo

Pytorch实现简单线性回归

import numpy as np
x_values = [i for i in range(11)]
x_train = np.array(x_values,dtype=np.float32)
x_train = x_train.reshape(-1,1)
print(x_train.shape)

y_values = [2*i+1 for i in x_values]
y_train = np.array(y_values,dtype=np.float32)
y_train = y_train.reshape(-1,1)
print(y_train.shape)

import  torch
import torch.nn as nn

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

class LinearRegressionModel(nn.Module):
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel, self).__init__()
        self.Linear = nn.Linear(input_dim,output_dim)

    def forward(self,x):
        out = self.Linear(x)
        return out

input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
model.to(device)

losses = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
epochs =  1000

for epoch in range(epochs):
    epoch += 1
    inputs = torch.from_numpy(x_train).to(device)
    outputs = torch.from_numpy(y_train).to(device)

    optimizer.zero_grad()

    out = model(inputs)

    loss = losses(out,outputs)

    loss.backward()
    optimizer.step()

    if epoch % 50 == 0:
        print('epoch {},loss {}'.format(epoch,loss))


#预测
predicted =model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
print(predicted)

# #保存
# torch.save(model.state_dict(),'model.pkl')  #保存模型的参数  w  b
# #加载
# model.load_state_dict(torch.load('model.pkl'))   #加载
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想成为风筝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值