Pytorch实现简单线性回归
import numpy as np
x_values = [i for i in range(11)]
x_train = np.array(x_values,dtype=np.float32)
x_train = x_train.reshape(-1,1)
print(x_train.shape)
y_values = [2*i+1 for i in x_values]
y_train = np.array(y_values,dtype=np.float32)
y_train = y_train.reshape(-1,1)
print(y_train.shape)
import torch
import torch.nn as nn
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
class LinearRegressionModel(nn.Module):
def __init__(self,input_dim,output_dim):
super(LinearRegressionModel, self).__init__()
self.Linear = nn.Linear(input_dim,output_dim)
def forward(self,x):
out = self.Linear(x)
return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
model.to(device)
losses = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
epochs = 1000
for epoch in range(epochs):
epoch += 1
inputs = torch.from_numpy(x_train).to(device)
outputs = torch.from_numpy(y_train).to(device)
optimizer.zero_grad()
out = model(inputs)
loss = losses(out,outputs)
loss.backward()
optimizer.step()
if epoch % 50 == 0:
print('epoch {},loss {}'.format(epoch,loss))
#预测
predicted =model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
print(predicted)
# #保存
# torch.save(model.state_dict(),'model.pkl') #保存模型的参数 w b
# #加载
# model.load_state_dict(torch.load('model.pkl')) #加载