向量外积计算平面法向量

向量外积计算平面法向量

向量外积的计算

行列式的计算

n n n阶行列式 A = ∣ A 11 A 12 ⋯ A 1 n A 21 A 22 ⋯ A 2 n ⋮ ⋮ ⋱ ⋮ A n 1 A n 2 ⋯ A n n ∣ A=\begin{vmatrix}A_{11}&A_{12}&\cdots&A_{1n}\\ A_{21}&A_{22}&\cdots&A_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ A_{n1}&A_{n2}&\cdots&A_{nn}\end{vmatrix} A= A11A21An1A12A22An2A1nA2nAnn ,定义它的一个余子式 M i j M_{ij} Mij为原行列式 A A A去除第 i i i行和第 j j j列后余下的元素组成的 n − 1 n-1 n1阶行列式,即: M i j = ∣ A 11 ⋯ A 1 , j − 1 A 1 , j + 1 ⋯ A 1 n ⋮ ⋮ ⋮ ⋮ A i − 1 , 1 ⋯ A i − 1 , j − 1 A i − 1 , j + 1 ⋯ A i − 1 , n ⋮ ⋮ ⋮ ⋮ A n 1 ⋯ A n , j − 1 A n , j + 1 ⋯ A n n ∣ M_{ij}=\begin{vmatrix} A_{11} & \cdots & A_{1,j-1} & A_{1,j+1} & \cdots & A_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ A_{i-1,1} & \cdots & A_{i-1,j-1} & A_{i-1,j+1} & \cdots & A_{i-1,n} \\ \vdots & & \vdots & \vdots & & \vdots \\ A_{n1} & \cdots & A_{n,j-1} & A_{n,j+1} & \cdots & A_{nn} \end{vmatrix} Mij= A11Ai1,1An1A1,j1Ai1,j1An,j1A1,j+1Ai1,j+1An,j+1A1nAi1,nAnn 定义元素 A i j A_{ij} Aij的代数余子式为 ( − 1 ) i + j M i j (-1)^{i+j}M_{ij} (1)i+jMij
行列式的性质:任意行列式等于任意一行(列)所有元素与其对应的代数余子式的乘积之和,即: A = ∑ k = 1 n ( − 1 ) i + k A i k M i k ( i = 1 , 2 , … , n ) A=\sum^n_{k=1}(-1)^{i+k}A_{ik}M_{ik} (i=1,2,\dots,n) A=k=1n(1)i+kAikMik(i=1,2,,n)由此可得二阶行列式的计算公式 ∣ a b c d ∣ = a d − b c \begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc acbd =adbc

向量外积的坐标计算

{ i , j , k } \{\textbf i, \textbf j, \textbf k\} {i,j,k}为空间直角坐标系 O x y z Oxyz Oxyz的一组单位正交基底,向量 a \textbf a a b \textbf b b在此基底下的坐标分别为 ( x 1 , y 1 , z 1 ) (x_1,y_1,z_1) (x1,y1,z1) ( x 2 , y 2 , z 2 ) (x_2,y_2,z_2) (x2,y2,z2),定义向量 a \textbf a a b \textbf b b的向量积: a × b = ∣ i j k x 1 y 1 z 1 x 2 y 2 z 2 ∣ \textbf a\times\textbf b=\begin{vmatrix} \textbf i & \textbf j & \textbf k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \end{vmatrix} a×b= ix1x2jy1y2kz1z2 i = 1 i=1 i=1,代入行列式计算公式: a × b = ∣ i j k x 1 y 1 z 1 x 2 y 2 z 2 ∣ = ∑ k = 1 3 ( − 1 ) k + 1 A 1 k M 1 k = ∣ y 1 z 1 y 2 z 2 ∣ i − ∣ x 1 z 1 x 2 z 2 ∣ j + ∣ x 1 y 1 x 2 y 2 ∣ k = ( y 1 z 2 − y 2 z 1 ) i + ( x 2 z 1 − x 1 z 2 ) j + ( x 1 y 2 − x 2 y 1 ) k = ( y 1 z 2 − y 2 z 1 , x 2 z 1 − x 1 z 2 , x 1 y 2 − x 2 y 1 ) \begin{align*} \textbf a\times\textbf b &= \begin{vmatrix} \textbf i & \textbf j & \textbf k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \end{vmatrix}\\ &= \sum^3_{k=1}(-1)^{k+1}A_{1k}M_{1k} \\ &= \begin{vmatrix}y_1&z_1\\y_2&z_2\end{vmatrix}\textbf i-\begin{vmatrix}x_1&z_1\\x_2&z_2\end{vmatrix}\textbf j+\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix}\textbf k \\ &= (y_1z_2-y_2z_1)\textbf i+(x_2z_1-x_1z_2)\textbf j+(x_1y_2-x_2y_1)\textbf k \\ &= (y_1z_2-y_2z_1,x_2z_1-x_1z_2,x_1y_2-x_2y_1) \end{align*} a×b= ix1x2jy1y2kz1z2 =k=13(1)k+1A1kM1k= y1y2z1z2 i x1x2z1z2 j+ x1x2y1y2 k=(y1z2y2z1)i+(x2z1x1z2)j+(x1y2x2y1)k=(y1z2y2z1,x2z1x1z2,x1y2x2y1)

计算平面法向量

由于 a = ( x 1 , y 1 , z 1 ) \textbf a=(x_1,y_1,z_1) a=(x1,y1,z1) b = ( x 2 , y 2 , z 2 ) \textbf b=(x_2,y_2,z_2) b=(x2,y2,z2) a × b = ( y 1 z 2 − y 2 z 1 , x 2 z 1 − x 1 z 2 , x 1 y 2 − x 2 y 1 ) \textbf a\times\textbf b=(y_1z_2-y_2z_1,x_2z_1-x_1z_2,x_1y_2-x_2y_1) a×b=(y1z2y2z1,x2z1x1z2,x1y2x2y1),则1 a ∙ ( a × b ) = ( x 1 , y 1 , z 1 ) ∙ ( y 1 z 2 − y 2 z 1 , x 2 z 1 − x 1 z 2 , x 1 y 2 − x 2 y 1 ) = x 1 y 1 z 2 − x 1 y 2 z 1 + x 2 y 1 z 1 − x 1 y 1 z 2 + x 1 y 2 z 1 − x 2 y 1 z 1 = 0 \begin{align*} \textbf a\bullet(\textbf a\times\textbf b)&=(x_1,y_1,z_1)\bullet(y_1z_2-y_2z_1,x_2z_1-x_1z_2,x_1y_2-x_2y_1)\\ &=x_1y_1z_2-x_1y_2z_1+x_2y_1z_1-x_1y_1z_2+x_1y_2z_1-x_2y_1z_1\\ &= 0 \end{align*} a(a×b)=(x1,y1,z1)(y1z2y2z1,x2z1x1z2,x1y2x2y1)=x1y1z2x1y2z1+x2y1z1x1y1z2+x1y2z1x2y1z1=0同理可证 b ∙ ( a × b ) = 0 \textbf b\bullet(\textbf a\times\textbf b)=0 b(a×b)=0。因此 a × b \textbf a\times\textbf b a×b a \textbf a a b \textbf b b2都互相垂直3。因此若 a \textbf a a b \textbf b b为平面 α \alpha α内两个不共线的向量,则 a × b \textbf a\times\textbf b a×b为平面 α \alpha α的一个法向量。
综上所述,若 a = ( x 1 , y 1 , z 1 ) \textbf a=(x_1,y_1,z_1) a=(x1,y1,z1) b = ( x 2 , y 2 , z 2 ) \textbf b=(x_2,y_2,z_2) b=(x2,y2,z2)为平面内(与平面平行)的两个不共线的向量,则 ( y 1 z 2 − y 2 z 1 , x 2 z 1 − x 1 z 2 , x 1 y 2 − x 2 y 1 ) (y_1z_2-y_2z_1,x_2z_1-x_1z_2,x_1y_2-x_2y_1) (y1z2y2z1,x2z1x1z2,x1y2x2y1)为该平面的一个法向量。


参考资料

  1. hunterzone.https://blog.csdn.net/hunter_wwq/article/details/41277983?app_version=6.1.8&code=app_1562916241&csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%2241277983%22%2C%22source%22%3A%22weixin_50930712%22%7D&uLinkId=usr1mkqgl919blen&utm_source=app [Z]. CSDN, 2014.
  2. 课程教材研究所. 人教版高中数学必修4 [M]. 北京: 人民教育出版社, 2007.

  1. ( a × b ) ∙ c (\textbf a\times\textbf b)\bullet\textbf c (a×b)c称为向量 a \textbf a a b \textbf b b c \textbf c c的标量混合积,它等于以 a \textbf a a b \textbf b b c \textbf c c为邻边的平行六面体的体积。当三个向量中任意两个相等时,平行六面体退化为平行四边形(当三个都相等时为线段),此时它的体积为零,它们即标量混合积为零。这和代数运算的结果相同。 ↩︎

  2. 事实上 a × b \textbf a\times\textbf b a×b的方向可以由右手螺旋定则给出。 ↩︎

  3. 也可能平行(当且仅当 a \textbf a a b \textbf b b共线时)。 ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值