改进YOLO系列 | 添加轻量化Decouple_Head 和 ASFF_Head

简介

本文提出了一种改进YOLO系列目标检测模型的方法,即在YOLO的头部引入轻量化的Decouple_Head和ASFF_Head模块,以提升模型的性能和效率。Decouple_Head通过解耦分类和回归任务,提高了模型的表达能力;ASFF_Head通过自适应特征融合,增强了模型对多尺度特征的利用。

原理详解

  • Decouple_Head:
    • 原理: 将传统的头部结构中耦合的分类和回归任务解耦,分别设计两个分支进行预测。这种解耦方式可以使模型更好地学习到分类和回归任务的特征,提高模型的表达能力。
    • 优势:
      • 减少了分类和回归任务之间的干扰。
      • 可以针对不同的任务设计不同的损失函数。
  • ASFF_Head:
    • 原理: 通过学习特征通道之间的相关性,自适应地融合来自不同特征金字塔层级的特征。ASFF可以根据不同特征的重要性,动态地调整融合权重。
    • 优势:
      • 增强了模型对多尺度特征的利用。
      • 提高了模型对小目标的检测性能。

应用场景解释

  • 目标检测: 适用于各种目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值