向量积的坐标运算公式推导_向量外积的直接证明与直观解释,并以此证明正弦公式...

本篇文章采用直接了当的方法讨论向量的外积公式。很多人只知道用向量内积公式去推导向量外积公式,殊不知向量外积的证明可以更加直接,并不需要以几积公式为基础。如果我们领悟这种更加直接的方式,相信我们会很容易理解为什么矩阵行列式的绝对值表示矩阵的行向量或列向量在

维空间上张成的平行多面的体积,实职上是

面体。并且我们也会很容易理解子式的意义。

首先我们来定义外积:假设向量

,

的逆时针夹角为

, 则定义外积为

显然从定义可知,外积的绝对值表示两个向量张成的平行四边形的面积。

为了推导该公式的坐标形式,我们先证明外积运算满足乘法分配律:如下图

假设

,

注意

逆时针夹角是

, 非

. 到此为止,我们便证明了向量的外积运算满足乘法分配律。

有了乘法分配律,我们再来看向量的坐标形式,不妨假设

其中倒数第二步是因为根据定义,共线的向量外积为零,所以只剩下两项。

如此,我们便得到了外积的坐标形式,由外积的定义,我们知道,外积的绝对值就是两个向量张成的平行四边形的面积。其实我们将外积公式稍微变形

其中

的与

轴的夹角,

是向量

轴的夹角。其实这正是高中所学的正弦公式。其实正弦公式本质上就是向量外积,余弦公式本质上就是向量内积,后者读者可根据分配律自己证明。

其实,外积公式与内积公式也可以相互推得,这是因为

故可由一个公式的坐标形式推导令一个公式的坐标形式。

其实矩阵的行列式就是向量的外积在高维空间上的直接推广,请读者自己思考。

另外,请感兴趣的读者关注我的知乎专栏:数学妙谈,高等代数精深简明讲义,古诗文以及公众号丞申通汇文化平台,随时更新新内容。本人电话:18612313613(微信同)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值