[计算机数值分析]牛顿下山法求方程的根

Spring-_-Bear 的 CSDN 博客导航

一般来说,牛顿法的收敛性依赖于初值 x 0 x_{0} x0 的选取,如果 x 0 x_{0} x0 偏离方程的正解根 x ∗ x^{*} x 较远,则牛顿法可能发散。

例:用牛顿法求方程 x 3 − x − 1 = 0 x^{3}-x-1=0 x3x1=0 x = 1.5 x = 1.5 x=1.5 附近的一个根。

解:取迭代初值 x 0 = 1.5 x₀=1.5 x0=1.5,用牛顿公式

x k + 1 = x k − x k 3 − x k − 1 3 x k 2 − 1 x_{k+1} = x_{k} - \frac{x^{3}_{k}-x_{k}-1}{3x^{2}_{k}-1} xk+1=xk3xk21xk3xk1

计算结果如下:

x 1 = 1.34783 , x 2 = 1.32520 , x 3 = 1.32472 x₁ = 1.34783, x₂ = 1.32520, x₃ = 1.32472 x1=1.34783x2=1.32520x3=1.32472
其中 x 3 x_{3} x3 的每一位数字都是有效数字。

但是,如果改用 x 0 = 0.6 x₀ = 0.6 x0=0.6 作为初值,则按照牛顿公式迭代一次得 x 1 = 17.9 x₁ = 17.9 x1=17.9,这个结果反而比 x 0 x₀ x0 更偏离了所求的根 x ∗ x^{*} x

为了防止迭代发散,通常对迭代过程再附加一项要求,即保证函数值单调下降,满足这项要求的算法称为下山法。

将牛顿法与下山法结合起来使用,即在下山法保证函数值稳定下降的前提下,用牛顿法加快收敛速度。

为此,将牛顿法的上一次迭代初值与本次迭代值进行适当加权平均后作为新的改进值,我们有理由相信,加权后的改进值是比未改进前的近似根更好的的根,它更好地逼近了真实解。即采用新的迭代公式

x k + 1 = x k − λ f ( x k ) f ′ ( x k ) x_{k+1}=x_{k}-\lambda\frac{f(x_{k})}{f'(x_{k})} xk+1=xkλf(xk)f(xk)

其中 λ 称为下山因子,适当选择下山因子可以使函数满足单调下降条件。下山因子的选取是一个逐步探索的过程,从 λ = 1 λ = 1 λ=1 开始反复将因子 λ 的值减半进行试算,一旦单调性条件成立,则 “下山成功”,否则 “下山失败”。若 “下山失败”,这时则需另选初值 x 0 x₀ x0 重算。

如前有例子描述,当选取初值 x 0 = 0.6 x₀ = 0.6 x0=0.6 时,如果取下山因子 λ = 1 32 λ=\frac{1}{32} λ=321,则可求出 x 1 = 1.140625 x₁ = 1.140625 x1=1.140625,这个结果纠正了原有的严重偏差。

运行示例:

在这里插入图片描述

程序源码:

#include <iostream>
#include <cmath>

using namespace std;

/**
 * 原函数 f(x)
 */
double f(double x)
{
    return pow(x, 3) - x - 1;
}

/**
 * 导函数 f1(x) = f'(x)
 */
double f1(double x)
{
    return 3 * pow(x, 2) - 1;
}

int main(void)
{
    double x0;
    cout << "请输入迭代初值:";
    cin >> x0;

    double accuracy;
    cout << "请输入精度:";
    cin >> accuracy;

    int N;
    cout << "请输入最大迭代次数:";
    cin >> N;

    double x1;
    int count = 0;
    do
    {
        if (f1(x0) == 0)
        {
            cout << "在 x0 附近 f(x) 的一阶导数值为 0,不适用牛顿法求方程的根!" << endl;
            break;
        }

        double L = 1;
        x1 = x0 - L * f(x0) / f1(x0);

        // 函数值未单调下降,控制下山因子的大小使得单调性条件得到满足,若不满足,则换初值重算
        while (abs(f(x1)) - abs(f(x0)) >= 0)
        {
            L /= 2;
            // 应用下山因子对迭代值进行改进
            x1 = x0 - L * f(x0) / f1(x0);
        }

        cout << "\n下山因子 L = " << L << "第 " << count << " 次迭代,方程的近似根为:" << x1 << endl;

        double temp = x1;
        x1 = x0;
        x0 = temp;

        if (++count > N)
        {
            cout << "达到允许的最大迭代次数!迭代结束!" << endl;
            break;
        }
    } while ((abs(x1 - x0) > accuracy));

    return 0;
}
  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值