day1
1.列表(list)是一个有序的序列结构,序列中的元素可以是不同的数据类型
[1,'a','c']
a_list.append('b') #添加数据;
a_list.remove('a') #删除数据,知道具体数值;
a_list.pop(-2) #按位置删数据:
从前往后,下标从0开始
2.元组(tuple)数据结构与列表类似,其中元素可以有不同的类型 但是元组中的元素是不可变的,即一旦初始化之后,就不能够再做修改(报错:元组对象不支持赋值)
(2,'a','b')
3.字典(我不会用)
4.函数名def:
def 函数名(参数1,参数2):
方法
return 参数
5.lambda函数:和其他很多语言相比,Python 的 lambda 限制多多,最严重的当属它只能由一条表达式组成
6.局部变量转全局变量
内部包含global xx,同一层出现xx和global xx的话 就会报错。如果xx在global xx在里面一级,则不会报错。
函数体内先查找局部函数,然后一层一层向外查找。
day2
异常:
try: code except: #except xx as e:指定异常 code #异常时抛出 finally: code #都会抛出
模块(模块名就是文件名)
import time time.sleep(5) #.表示使用time中的函数 from time import sleep #使用具体莫功能 from time import * #表示全部 sleep(5) #不用.
json:
a = json.dumps(data) #转化为json
data = json.loads(s) #json转化回字典或列表
day3
第三方包无法正常使用(未解决)
class类
# class student: # name = None # gender = None # age = None # # stu1 = student() # stu1.age = 18 # stu1.name = '鼬' # stu1.gender = '男'
类中方法:
def A(self): #self在方法中必须有,传参时可忽略 print("我是{self.name}") #在成员方法内部使用成员变量必须加self
类中调用对象,方法要用self.xx
构造方法(自动运行,自动传参)
def __init__(self, name, age): self.name = "是" self.age = 12 print("你好"{self.name}) a = stu("发",21)
类对象
a = class()
方法:
__xx(私有成员,私有方法)
类(内部)中可用,对象(外部)不可用
继承
class 类名(父类1,父类2,父类N) #继承父类的功能
多个父类中成员名,方法,属性相同,先继承覆盖后继承
子类中调用父类:
1. super().xx 2. 父类.xx
day4
字符串匹配:
import re s = 'hello world' result = re.match('hello',s) #match方法第一位必须要匹配 print(result)
re.search(全局寻找,找到了就停止)
re.findall(寻找所有符合项)
day5
numpy对数组基本描述:
import numpy as np array = np.array([[1,2,3], [4,5,6],]) print(array) print('几维:',array.ndim) print('shape',array.shape) print('size',array.size) axis轴(好难理解,不太懂)
pandas:(一些简单的表达)
import pandas as pd import numpy as np import matplotlib.pyplot as plt s = pd.Series([1,4,3,5,np.nan,98,2]) dates = pd.date_range('20240521',periods=6) df = pd.DataFrame(np.arange(24).reshape((6,4)),index = dates,columns=['a','b','c','d']) print(df) #index=行,columns=列
运行结果:
df.iloc[2,2] = 111 #根据位置修改 df.loc['20240521','b'] = 222 #根据标签修改 df[df.a>8] = 0 #根据条件修改 df['e'] = pd.Series([1,2,3,4,5,6],index = pd.date_range('20240527',periods = 6)) print(df)