动手学深度学习笔记
一、注意力评分函数
把注意力函数的输出结果输入到softmax中进行运算,将得到与键对应的值的概率分布(即注意力权重)。 最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。
f ( q , ( k 1 , v 1 ) , … , ( k m , v m ) ) = ∑ i = 1 m α ( q , k i ) v i ∈ R v α ( q , k i ) = s o f t m a x ( a ( q , k i ) ) = exp ( a ( q , k i ) ) ∑ j = 1 m exp ( a ( q , k j ) ) ∈ R f(\mathbf{q}, (\mathbf{k}_1, \mathbf{v}_1), \ldots, (\mathbf{k}_m, \mathbf{v}_m)) = \sum_{i=1}^m \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i \in \mathbb{R}^v\\ \alpha(\mathbf{q}, \mathbf{k}_i)=\mathrm{softmax}(a(\mathbf{q}, \mathbf{k}_i)) = \frac{\exp(a(\mathbf{q}, \mathbf{k}_i))}{\sum_{j=1}^m \exp(a(\mathbf{q}, \mathbf{k}_j))} \in \mathbb{R} f(q,(k1,v1),…,(km,vm))=i=1∑mα(q,ki)vi∈Rvα(q,ki)=softmax(a(q,ki))=∑j=1mexp(a(q,kj))exp(a(q,ki))∈R
选择不同的注意力评分函数 a a a 会导致不同的注意力权重值。
1.masked softmax
softmax操作用于输出一个概率分布作为注意力权重。但是,有时候某些文本序列被填充了没有意义的特殊词元,如’<pad>’。为了仅将有意义的词元作为值来获取注意力汇聚,使用一个非常大的负值替换没有意义的特殊词元。
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return F.softmax(X, dim = -1)
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)
return F.softmax(X.reshape(shape), dim=-1)
# masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]]))
2.加性注意力
当查询和键是不同长度的矢量时,一般使用加性注意力作为评分函数。给定查询 q ∈ R q \mathbf{q} \in \mathbb{R}^q q∈Rq和键 k ∈ R k \mathbf{k} \in \mathbb{R}^k k∈Rk,加性注意力(additive attention)的评分函数为:
a ( q , k ) = w v ⊤ tanh ( W q q + W k k ) ∈ R a(\mathbf q, \mathbf k) = \mathbf w_v^\top \text{tanh}(\mathbf W_q\mathbf q + \mathbf W_k \mathbf k) \in \mathbb{R} a(q,k)=wv⊤tanh(Wqq+Wkk)∈R
class AdditiveAttention(nn.Module):
"""加性注意力"""
def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
super(AdditiveAttention, self).__init__(**kwargs)
self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
self.w_v = nn.Linear(num_hiddens, 1, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_q(queries), self.W_k(keys)
# 维度扩展后,使用广播方式进行求和
# queries的形状:(batch_size,查询的个数,1,num_hidden)
# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
features = queries.unsqueeze(2) + keys.unsqueeze(1)
features = torch.tanh(features)
# self.w_v仅有一个输出,因此从形状中移除最后那个维度。
# scores的形状:(batch_size,查询的个数,“键-值”对的个数)
scores = self.w_v(features).squeeze(-1)
self.attention_weights = masked_softmax(scores, valid_lens)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# 输出形状:(batch_size,查询的个数,值的维度)
return torch.bmm(self.dropout(self.attention_weights), values)
queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
# values的小批量,两个值矩阵是相同的
values = torch.arange(40,dtype=torch.float32).reshape(1,10,4).repeat(2,1,1)
valid_lens = torch.tensor([2, 6])
attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8,
dropout=0.1)
attention.eval()
print(attention(queries, keys, values, valid_lens))
# valid_lens = torch.tensor([2, 6]),所以queries的attention权重分别有两个、六个
d