PyTorch生成式AI实战:手把手搭建GAN+Transformer模型(附避坑指南与部署代码)


PyTorch生成式AI实战:从零构建GAN与Transformer的速成指南(附完整代码)


一、生成式AI基础与技术选型

  1. 生成式AI核心概念
    • 定义:通过学习数据分布生成新内容(图像/文本/音频),对比判别模型(如分类任务)的差异。

    • 技术分支:

    ◦ GAN(生成对抗网络):生成器与判别器的博弈框架,适合图像生成(如Midjourney)。

    ◦ Transformer:基于自注意力机制,主导文本生成(如ChatGPT)。

    • 应用场景:艺术创作、代码生成、数据增强。

在这里插入图片描述

  1. 环境配置与工具链
    • 开发环境:

    # 推荐使用Anaconda创建虚拟环境  
    conda create -n pytorch_gai python=3.9  
    conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia  
    pip install matplotlib numpy pandas  
    

    • GPU加速验证:

    import torch  
    print(torch.cuda.is_available())  # 输出True表示GPU可用  
    

二、GAN模型实战:手写数字生成(MNIST数据集)

  1. 数据加载与预处理

    from torchvision import datasets, transforms  
    # 定义数据增强与标准化  
    transform = transforms.Compose([  
        transforms.Resize(64),  # 统一输入尺寸  
        transforms.ToTensor(),  
        transforms.Normalize((0.5,), (0.5,))  # 归一化到[-1,1]  
    ])  
    # 加载MNIST数据集  
    train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)  
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)  
    
  2. 生成器与判别器构建
    • 生成器(Generator):将随机噪声转换为图像

    class Generator(nn.Module):  
        def __init__(self, latent_dim=100):  
            super().__init__()  
            self.model 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AL.千灯学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值