PyTorch生成式AI实战:从零构建GAN与Transformer的速成指南(附完整代码)
一、生成式AI基础与技术选型
-
生成式AI核心概念
• 定义:通过学习数据分布生成新内容(图像/文本/音频),对比判别模型(如分类任务)的差异。• 技术分支:
◦ GAN(生成对抗网络):生成器与判别器的博弈框架,适合图像生成(如Midjourney)。
◦ Transformer:基于自注意力机制,主导文本生成(如ChatGPT)。
• 应用场景:艺术创作、代码生成、数据增强。
-
环境配置与工具链
• 开发环境:# 推荐使用Anaconda创建虚拟环境 conda create -n pytorch_gai python=3.9 conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia pip install matplotlib numpy pandas
• GPU加速验证:
import torch print(torch.cuda.is_available()) # 输出True表示GPU可用
二、GAN模型实战:手写数字生成(MNIST数据集)
-
数据加载与预处理
from torchvision import datasets, transforms # 定义数据增强与标准化 transform = transforms.Compose([ transforms.Resize(64), # 统一输入尺寸 transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) # 归一化到[-1,1] ]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
-
生成器与判别器构建
• 生成器(Generator):将随机噪声转换为图像class Generator(nn.Module): def __init__(self, latent_dim=100): super().__init__() self.model