最近AI社区开始讨论一种全新极简主义 GAN(生成对抗网络)。
来自布朗大学和康奈尔大学的研究者们通过引入一种新损失函数,有效解决了以往 GAN 模型崩溃和不稳定的问题。他们对流行的StyleGAN2进行了简单升级,命名为“R3GAN”。令人惊喜的是,尽管R3GAN更加简洁,但其在图像生成和数据增强任务上的表现,却超过了所有现有的GAN和扩散模型。
自从Transformer横空出世,各种与Transformer结合的创新应用层出不穷。今天就跟大家分享一个备受瞩目的热门研究方向:Transformer+GAN。
Transformer与GAN强强联手,在生成数据时拥有了更高质量和更多样性的选择,同时显著提升了计算效率与结果的可解释性。这样的技术融合,已经在图像生成、文本创作、语音合成等多个领域展现出无限潜力。
为了让大家更加了解这一创新技术,我整理了10篇Transformer + GAN的相关论文,全部论文PDF版,工棕号【沃的顶会】回复 GAN创新 即可领取!
Generating Visual stimuli from EEG Recordings using Transformer-encoderbased EEG encoder and GAN
文章解析
本文提出了一种新的方法,通过结合预训练的卷积神经网络(CNN)和条件生成对抗网络(GAN),从EEG信号中合成图像。