GAN归来?与Transformer结合拿下CV顶会!

最近AI社区开始讨论一种全新极简主义 GAN(生成对抗网络)。

来自布朗大学和康奈尔大学的研究者们通过引入一种新损失函数,有效解决了以往 GAN 模型崩溃和不稳定的问题。他们对流行的StyleGAN2进行了简单升级,命名为“R3GAN”。令人惊喜的是,尽管R3GAN更加简洁,但其在图像生成和数据增强任务上的表现,却超过了所有现有的GAN和扩散模型。

自从Transformer横空出世,各种与Transformer结合的创新应用层出不穷。今天就跟大家分享一个备受瞩目的热门研究方向:Transformer+GAN。

Transformer与GAN强强联手,在生成数据时拥有了更高质量和更多样性的选择,同时显著提升了计算效率与结果的可解释性。这样的技术融合,已经在图像生成、文本创作、语音合成等多个领域展现出无限潜力。

为了让大家更加了解这一创新技术,我整理了10篇Transformer + GAN的相关论文,全部论文PDF版,工棕号【沃的顶会】回复 GAN创新 即可领取!

Generating Visual stimuli from EEG Recordings using Transformer-encoderbased EEG encoder and GAN

文章解析

本文提出了一种新的方法,通过结合预训练的卷积神经网络(CNN)和条件生成对抗网络(GAN),从EEG信号中合成图像。

### Transformer 结合 GAN 的应用和实现方法 #### 应用场景 Transformer生成对抗网络 (GAN) 的结合已经在多个领域展示了强大的能力。这种组合不仅能够提升图像生成的质量,还能扩展到其他多模态数据的生成任务中[^1]。 对于高维数据如图像而言,直接利用标准的 Transformer 架构会遇到计算资源上的瓶颈。因此,在实际应用中通常采用混合架构的方式,即部分组件基于卷积神经网络(CNN),而另一些则依赖于 Transformer 来捕捉全局特征之间的关系。例如 ViTGAN 就是一个成功的案例,它证明了即使是在像 CIFAR-10 这样的复杂数据集上也能取得良好的效果[^3]。 #### 实现方式 为了有效地将两者结合起来,可以考虑以下几个方面: ##### 数据预处理阶段 由于原始图片尺寸较大,直接送入全连接层会导致参数过多难以训练。一种常见的做法是对输入图像进行分块操作后再传递给后续模块处理;另一种则是先经过下采样得到较小规模表示形式再交给编码器进一步加工[^5]。 ##### 模型结构设计 考虑到效率问题,一般不会单纯依靠纯 Transformer 建立整个框架而是采取融合策略——比如让生成器保留传统 CNN 风格的同时引入局部窗口内的自注意机制来增强表达力;而对于判别器来说,则更多地倾向于使用完整的 Transformer 或者简化版本以更好地理解整体语义信息。 下面给出一段简单的 Python 伪代码用于构建上述提到的一种可能方案: ```python import torch.nn as nn from transformers import AutoModelForImageClassification, AutoConfig class TT_GANGenerator(nn.Module): def __init__(self, config_path='facebook/vit-mae-base'): super().__init__() self.backbone = ... # 自定义骨干网路 vit_config = AutoConfig.from_pretrained(config_path) self.transformer_head = AutoModelForImageClassification.from_config(vit_config) def forward(self, x): features = self.backbone(x) output = self.transformer_head(features)[0] return output # 类似地定义TT_GANDiscriminator类... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值