数据分析学习(二)

目录

一、数据清洗及特征处理

1.1缺失值观察与处理

缺失值观察

 对缺失值进行处理

重复值观察与处理

 对重复值进行处理

1.2 特征观察与处理

对连续型变量进行分箱(离散化)处理

 对文本变量进行变换

二、数据重构

2.1 数据的合并

2.2 将我们的数据变为Series类型的数据

 2.3 数据运用

GroupBy机制

三、数据可视化


一、数据清洗及特征处理

1.1缺失值观察与处理

缺失值观察

#方法一
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
#方法二
df.isnull().sum()
PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64
# 方法三
df[['Age','Cabin','Embarked']].head(3)

 对缺失值进行处理

函数功能
df[df['Age']==None]=0把缺失值赋为0
df[df['Age'].isnull()] = 0把缺失值赋为0
df[df['Age'] == np.nan] = 0把缺失值赋为0
df.dropna().head(3)删去有缺失值的行
df.fillna(0).head(3)把缺失值赋为0

P.S.检索空缺值用np.nan,None以及.isnull()哪个更好?

        数值列读取数据后,空缺值的数据类型为float64所以用None一般索引不到,比较的时候最好用np.nan

重复值观察与处理

# 查看数据中的重复值
df[df.duplicated()]

 对重复值进行处理

函数功能
df = df.drop_duplicates()清理重复值行

1.2 特征观察与处理

我们对特征进行一下观察,可以把特征大概分为两大类:
数值型特征:Survived ,Pclass, Age ,SibSp, Parch, Fare,其中Survived, Pclass为离散型数值特征,Age,SibSp, Parch, Fare为连续型数值特征
文本型特征:Name, Sex, Cabin,Embarked, Ticket,其中Sex, Cabin, Embarked, Ticket为类别型文本特征。

数值型特征一般可以直接用于模型的训练,但有时候为了模型的稳定性及鲁棒性会对连续变量进行离散化。文本型特征往往需要转换成数值型特征才能用于建模分析。

对连续型变量进行分箱(离散化)处理

#将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示
df['AgeBand'] = pd.cut(df['Age'], 5,labels = [1,2,3,4,5])
df.head()

#将连续变量Age划分为(0,5] (5,15] (15,30] (30,50] (50,80]五个年龄段,并分别用类别变量12345表示
df['AgeBand'] = pd.cut(df['Age'],[0,5,15,30,50,80],labels = [1,2,3,4,5])
df.head(3)

 

#将连续变量Age按10% 30% 50 70% 90%五个年龄段,并用分类变量12345表示
df['AgeBand'] = pd.qcut(df['Age'],[0,0.1,0.3,0.5,0.7,0.9],labels = [1,2,3,4,5])
df.head()

 对文本变量进行变换

#查看类别文本变量名及种类

#方法一: value_counts
df['Sex'].value_counts()
male      453
female    261
0           1
Name: Sex, dtype: int64
#方法二: unique
df['Sex'].unique()
array(['male', 'female', 0], dtype=object)
#将类别文本转换为12345

#方法一: replace
df['Sex_num'] = df['Sex'].replace(['male','female'],[1,2])
df.head()

#方法二: map
df['Sex_num'] = df['Sex'].map({'male': 1, 'female': 2})
df.head()

#将类别文本转换为one-hot编码

#方法一: OneHotEncoder
for feat in ["Age", "Embarked"]:
#     x = pd.get_dummies(df["Age"] // 6)
#     x = pd.get_dummies(pd.cut(df['Age'],5))
    x = pd.get_dummies(df[feat], prefix=feat)
    df = pd.concat([df, x], axis=1)
    #df[feat] = pd.get_dummies(df[feat], prefix=feat)
    
df.head()
# 从纯文本Name特征里提取出Titles的特征(所谓的Titles就是Mr,Miss,Mrs等)
df['Title'] = df.Name.str.extract('([A-Za-z]+)\.', expand=False)
df.head()

二、数据重构

2.1 数据的合并

# 将data文件夹里面的所有数据都载入,与之前的原始数据相比,观察他们的之间的关系
text_left_up = pd.read_csv("data/train-left-up.csv")
text_left_down = pd.read_csv("data/train-left-down.csv")
text_right_up = pd.read_csv("data/train-right-up.csv")
text_right_down = pd.read_csv("data/train-right-down.csv")


# 使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up
list_up = [text_left_up,text_right_up]
result_up = pd.concat(list_up,axis=1)
result_up.head()
# 使用DataFrame自带的方法join方法和append完成表格的横纵合并
resul_up = text_left_up.join(text_right_up)
result_down = text_left_down.join(text_right_down)
result = result_up.append(result_down)
result.head()

# 使用Panads的merge方法和DataFrame的append方法完成表格的横纵合并
result_up = pd.merge(text_left_up,text_right_up,left_index=True,right_index=True)
result_down = pd.merge(text_left_down,text_right_down,left_index=True,right_index=True)
result = resul_up.append(result_down)
result.head()

2.2 将我们的数据变为Series类型的数据

# 将完整的数据加载出来
text = pd.read_csv('result.csv')
text.head()
# 代码写在这里
unit_result=text.stack().head(20)    # stack()将列旋转到行
unit_result.head()

 2.3 数据运用

GroupBy机制

# 计算男性女性的平均票价
df  = text['Fare'].groupby(text['Sex'])
means = df.mean()
Sex
female    44.479818
male      25.523893
Name: Fare, dtype: float64
# 多个列同时分析时,可以通过agg()函数来计算,并且可以使用rename函数修改列名。
# 例子:计算男性与女性的平均票价和男女的存活人数
text.groupby('Sex').agg({'Fare': 'mean', 'Pclass': 'count'}).rename(columns=
                            {'Fare': 'mean_fare', 'Pclass': 'count_pclass'})

三、数据可视化

# 可视化展示泰坦尼克号数据集中男女中生存人数分布情况
sex = text.groupby('Sex')['Survived'].sum()
sex.plot.bar()
plt.title('survived_count')
plt.show()

# 可视化展示泰坦尼克号数据集中不同年龄的人生存与死亡人数分布情况。
facet = sns.FacetGrid(text, hue="Survived",aspect=3)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, text['Age'].max()))
facet.add_legend()

# 可视化展示泰坦尼克号数据集中不同仓位等级的人年龄分布情况。
text.Age[text.Pclass == 1].plot(kind='kde')
text.Age[text.Pclass == 2].plot(kind='kde')
text.Age[text.Pclass == 3].plot(kind='kde')
plt.xlabel("age")
plt.legend((1,2,3),loc="best")

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值