从RGB到多通道图像的迁移学习

这篇博客探讨了如何将预训练的ResNet50模型应用于多通道图像的语义分割,通过Segmentation Models PyTorch库实现。文章介绍了三种方法,包括扩展权重维度、填充平均值以及创建并行网络来适应额外通道。重点讨论了第二种子方法,并提到了在数据预处理和Dataloader中遇到的问题及其解决方案。
摘要由CSDN通过智能技术生成

从 RGB 到多通道图像的迁移学习

迁移学习–多通道使用 ResNet50 Backbone 和 Pyramid Pooling 进行语义分割

https://towardsdatascience.com/implementing-transfer-learning-from-rgb-to-multi-channel-imagery-f87924679166

从 RGB 到多通道
我们的探索提出了三种可以用来将在 3 个通道上训练的模型转换为更多通道的方法。这些方法跨越不同的复杂程度。我们将简要讨论这些方法–

  • 第一种方法是简单地扩展权重维度以考虑额外的通道数量并随机初始化值。

  • 第二种方法与第一种方法类似,除了不是用随机初始化的值填充值,我们用其他值的平均值填充它。我们在一篇科学论文(见下文)中发现了这种方法,该论文描述了这种方法比第一种方法效果更好。这是我们将在本文中探索的方法。

  • 理论上,最终方法应该提供最佳性能。但是,这种方法在训练时间方面会花费更长的时间。该方法表明,先前讨论的方法将偏向于前三个通道,因为这是最初训练预训练模型的基础。这种方法建议我们创建第二个并行网络,在剩余通道上执行特征提取,然后将输出与原始预训练模型的输出连接起来。通过这种方式,第二个模型学习了特定于附加通道的表示,我们仍然利用原样使用预训练模型。这种方法将在另一篇文章中探讨。

Deeplabv3plus Pape

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值