从RGB到多通道图像的迁移学习

这篇博客探讨了如何将预训练的ResNet50模型应用于多通道图像的语义分割,通过Segmentation Models PyTorch库实现。文章介绍了三种方法,包括扩展权重维度、填充平均值以及创建并行网络来适应额外通道。重点讨论了第二种子方法,并提到了在数据预处理和Dataloader中遇到的问题及其解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从 RGB 到多通道图像的迁移学习

迁移学习–多通道使用 ResNet50 Backbone 和 Pyramid Pooling 进行语义分割

https://towardsdatascience.com/implementing-transfer-learning-from-rgb-to-multi-channel-imagery-f87924679166

从 RGB 到多通道
我们的探索提出了三种可以用来将在 3 个通道上训练的模型转换为更多通道的方法。这些方法跨越不同的复杂程度。我们将简要讨论这些方法–

  • 第一种方法是简单地扩展权重维度以考虑额外的通道数量并随机初始化值。

  • 第二种方法与第一种方法类似,除了不是用随机初始化的值填充值,我们用其他值的平均值填充它。我们在一篇科学论文(见下文)中发现了这种方法,该论文描述了这种方法比第一种方法效果更好。这是我们将在本文中探索的方法。

  • 理论上,最终方法应该提供最佳性能。但是,这种方法在训练时间方面会花费更长的时间。该方法表明,先前讨论的方法将偏向于前三个通道,因为这是最初训练预训练模型的基础。这种方法建议我们创建第二个并行网络,在剩余通道上执行特征提取,然后将输出与原始预训练模型的输出连接起来。通过这种方式,第二个模型学习了特定于附加通道的表示,我们仍然利用原样使用预训练模型。这种方法将在另一篇文章中探讨。

Deeplabv3plus Pape

### RGB图像与红外图像多模态融合方法及技术实现 #### 融合策略概述 网络结构分为前端融合、中间融合及后端融合(双路),这些不同的融合策略允许RGB与红外图像不同方式结合,从而优化目标检测任务的性能[^1]。 #### 前端融合 前端融合直接将RGB和红外图像作为单一输入传递给模型。这种简单的方式能够快速实现两者的初步组合,但在复杂场景下的表现可能不如其他更精细的方法好。 #### 中间融合 中间融合作用于模型内部的特定层次上,在此阶段进行特征级别的混合。这种方式可以在一定程度上保留原始信息的同时引入跨通道的相关特性,有助于提高识别精度。 #### 后端融合(双路) 后端融合采取两条独立路径分别处理RGB和红外图像,最终在模型末端完成合并。该方法能充分挖掘各自的优势并减少相互干扰的可能性,适用于需要高分辨率输出的应用场合。 #### 多模态图像配准融合——UMF-CMGR网络实例 对于更加复杂的多模态融合需求,可以考虑使用UMF-CMGR网络框架。其大致思路如下: - **感知风格迁移网络(CPSTN)** 将可见光图像转换成伪红外形式; - 利用**多级细化配准网络(MRRN)** 预测实际红外图与生成版本间的位移向量场来校正位置偏差; - 应用**双路径交互融合网络(DIFN)** 实施最终的信息合成过程[^2]。 ```python import torch.nn as nn class CPSTN(nn.Module): def __init__(self, input_channels=3, output_channels=1): super().__init__() self.encoder = Encoder(input_channels) self.decoder = Decoder(output_channels) def forward(self, rgb_image): features = self.encoder(rgb_image) pseudo_ir_image = self.decoder(features) return pseudo_ir_image def align_images(ir_image, generated_ir_image): mrrn_model = MRRN() displacement_field = mrrn_model(ir_image, generated_ir_image) aligned_generated_ir_image = apply_displacement(generated_ir_image, displacement_field) return aligned_generated_ir_image class DIFN(nn.Module): ... final_fused_output = difn_module(aligned_rgb_and_pseudo_ir_features) ``` 上述代码片段展示了如何构建一个基于UMF-CMGR理念的基础模块化设计,其中包含了三个主要组件的功能定义以及它们之间的工作流程连接逻辑。 #### 不对称融合架构探索 另外一种值得注意的技术路线是对称性较低的不对称双分支架构,它由一条专注于RGB视觉信号解析的主要线路加上另一条负责收集来自多个传感器的数据流构成。后者经过一系列预处理之后再同前者汇合共同参与后续分析计算工作。这样的设计方案特别适合应对环境变化较大或是某些观测手段受限的情况,并且具有良好的扩展性和适应能力[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值