拍卖理论之反向拍卖设计机理

Quality of Information Aware Incentive Mechanisms for Mobile Crowd Sensing Systems∗ 众包感知中基于信息质量的激励机制

这篇文献作者在设计群众感知系统的激励机制是运用到了反向拍卖第二竞价的相关知识, 下文主要介绍该机制的设计原理,充分条件。

key words

反向拍卖 赢家排除机制

main idea

由于各种因素(例如,传感器质量,噪声等),由个别用户贡献的感觉数据的质量差异很大。获得高质量的数据始终是MCS平台的理想

研究了单一任务和多任务的组合拍卖模型。对于前者而言,设计了一个真实的,个人的理性和计算有效的拍卖机制,该机制近似于保证的近似比率最大化社会福利;对于后者,我们设计了一种迭代降级机制,该机制可实现接近到最佳的社会福利,同时满足个人理性和计算效率。

examples of social event

空气质量监测是MCS系统获得最近受欢迎的另一个领域。在这样的系统中,众包空气质量数据是从许多人使用装在其智能手机上的空气质量传感器的人汇总的,这有助于估计城市或地区一级的空气质量。

本机制还旨在最大化社会福利。

PRELIMINARIES

System Overview

基于拍卖机制时系统流程:

1.平台发布任务集合T

2.进入竞拍阶段 用户作为卖方 平台作为买方 用户向平台递交(Γi, bi)信息,

3.平台根据用户递交信息选择用户

4.赢家提交数据 平台支付报酬

Auction Model

请添加图片描述
请添加图片描述

一个有效的拍卖机制 需要满足以下三种性质:

1.真实性

用户只有在提交真实的 兴趣任务集合和成本时 获益最大; 也即平台给用户的都是关键支付

(1)单调性: 两方面 (Γi, bi) ; 根据赢家决定算法可知 Γi越大 被选择的机会越大; bi越小 被选中的机会越大

(2)关键支付:the user will not increase her utility by bidding (Γi, bi) instead of (Γi*, bi);关注兴趣集合 ,用户不能通过减小用户集合来提高收益(更不可能增大效应集合 默认用户不会把自己能力范围之外的任务集合给虚报上去)

(Γi *, bi) will also not increase her utility compared to (Γi *, ci);关注报价。 具体情况分析见下图

请添加图片描述

2.个体理性
3.高效计算

请添加图片描述
注:
请添加图片描述
由两部分组成, 用户提价的自己打算完成的任务集合+用户的成本报价。

反向竞拍机制确保只有用户在真实提交上述数据时收益最大。(瞒报的话无法提升收益 那用户就没有动力去瞒报了。)

文中所谓的第二竞价规则并非第二高价拍卖,而是一种赢家排除机制:在计算给某个赢家的报酬时,我先把该赢家从群体中排除出去,根据剩下人群和相应的算法计算出支付给该被排除赢家的报酬。详情见文献。

文献URL: https://dl.acm.org/doi/10.1145/2746285.2746310

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值