【人工智能】项目实践和案例分析:使用TensorFlow制作商品推荐系统

一、项目概述

本项目旨在构建一个基于TensorFlow的商品推荐系统,该系统将利用用户的历史购买记录和商品信息来预测用户对潜在商品的偏好,并据此进行推荐。推荐系统在现代电商平台中至关重要,能有效提升用户体验和增加销售额。

二、详细实施计划

为了将这个项目完整地落地,我们需要按步骤进行开发、测试和部署。以下是一个详细的实施计划: 

1. 需求分析与规划

  • 明确项目目标:确保所有团队成员都理解项目的最终目标,即构建一个有效的商品推荐系统。
  • 技术选型:确认使用的技术栈(如已列出)适合项目需求。
  • 制定时间表:规划项目的各个阶段,包括数据收集、处理、模型开发、测试、部署和维护。

2. 数据收集与预处理

数据收集

  • 数据源:从电商平台获取用户购买记录和商品信息。
  • 数据格式:确保数据格式统一,便于后续处理。

数据预处理

  • 清洗数据:去除重复记录,处理无效或异常数据。
  • 处理缺失值:根据业务逻辑填充缺失值(如使用均值、中位数或众数)。
  • 标准化:对价格等数值型特征进行归一化处理,避免不同量纲的影响。
  • 特征构建
    • 用户购买历史向量化:可以使用One-Hot编码、TF-IDF或Embedding等方法。
    • 商品属性向量化:类似地,对商品名称、类别等属性进行向量化处理。

数据存储

  • 原始数据存储:使用MySQL或MongoDB存储原始数据,便于后续查询和验证。
  • 处理后数据存储:使用HDFS或TensorFlow的TFRecords格式存储处理后的数据,提高模型训练效率。

3. 模型开发与训练

模型选择

  • 基于内容的推荐:开发一个简单的神经网络模型,学习商品特征与用户历史购买商品特征之间的相似度。
  • 协同过滤:实现用户-商品交互矩阵的分解,如矩阵分解(MF)或SVD++。
  • 混合推荐:结合上述两种方法,提升推荐准确性。

模型训练

  • 数据划分:将处理后的数据划分为训练集、验证集和测试集。
  • 模型训练:使用TensorFlow/Keras构建和训练模型,使用Adam优化器和适当的损失函数。
  • 超参数调优:通过交叉验证等方法调整模型参数,优化模型性能。

4. 服务层开发

推荐API

  • Flask/Django后端:开发RESTful API接口,接收用户ID作为输入,调用推荐模型并返回推荐商品列表。
  • API文档:编写详细的API文档,说明接口的使用方法和返回数据格式。

前端展示

  • React/Vue.js前端:开发前端页面,调用推荐API并展示推荐结果。
  • 用户交互:设计友好的用户界面,提供搜索、筛选等功能,提升用户体验。

5. 测试与部署

测试

  • 单元测试:对各个模块进行单元测试,确保代码质量。
  • 集成测试:测试整个系统的集成效果,确保各模块之间能够正确交互。
  • 性能测试:测试系统的响应时间和处理能力,确保满足业务需求。

部署

  • 服务器准备:选择适当的服务器或云平台,配置必要的软件环境(如Python、TensorFlow、Flask/Django等)。
  • 系统部署:将后端服务和前端页面部署到服务器上,并进行必要的配置。
  • 安全加固:对系统进行安全加固,防止数据泄露和非法访问。

6. 维护与优化

  • 监控与日志:使用监控工具跟踪系统状态,记录日志以便问题追踪。
  • 性能优化:根据系统使用情况调整参数,优化性能。
  • 用户反馈:收集用户反馈,根据反馈调整推荐策略和优化系统。
  • 持续学习:关注最新的机器学习技术和算法进展,持续优化推荐模型。

通过以上步骤,我们可以将这个项目完整地落地,并构建出一个高效、准确的商品推荐系统。

 三、架构设计及技术栈

架构设计

1. 数据层

  • 数据源:用户购买记录(用户ID, 商品ID, 购买时间等)、商品信息(商品ID, 商品名称, 商品类别, 价格等)。
  • 数据预处理:清洗数据,处理缺失值,标准化(如价格归一化),构建特征(如用户购买历史向量化,商品属性向量化)。
  • 数据存储:使用MySQL或MongoDB存储原始数据,使用HDFS或TensorFlow的TFRecords格式存储处理后的数据用于模型训练。

2. 模型层

  • 框架:TensorFlow/Keras,利用其高级API简化模型构建和训练过程。
  • 模型选择
    • 基于内容的推荐:使用简单的神经网络模型学习商品特征与用户历史购买商品特征之间的相似度。
    • 协同过滤:包括用户-商品交互矩阵的分解(如矩阵分解MF、SVD++等)。
    • 混合推荐:结合内容特征和协同过滤,提升推荐准确性。
  • 优化器:Adam优化器,适用于大多数深度学习场景。
  • 损失函数:均方误差(MSE)或交叉熵损失,根据具体任务选择。

3. 服务层

  • 推荐API:提供RESTful API接口,接收用户ID作为输入,返回推荐商品列表。
  • 前端展示:使用React或Vue.js开发前端页面,展示推荐结果。

技术栈

  • 后端:Python, Flask/Django(用于API开发)
  • 前端:React/Vue.js, HTML, CSS
  • 数据库:MySQL/MongoDB
  • 机器学习框架:TensorFlow/Keras
  • 数据处理:Pandas, NumPy, Scikit-learn

四、完整的项目文件结构 

根据构建的完整商品推荐系统,下面是该项目的一个典型文件结构示例。这个结构包含了数据预处理、模型训练、服务部署和前端展示的所有必要组成部分。 

project/
│
├── backend/
│   ├── app.py                   # 后端服务主文件
│   ├── models/                  # 模型文件夹
│   │   ├── mf_model.h5          # 协同过滤模型文件
│   │   └── mixed_model.h5       # 混合推荐模型文件
│   ├── requirements.txt         # 后端依赖项
│   └── utils/                   # 实用工具文件夹
│       ├── data_utils.py        # 数据预处理脚本
│       ├── model_utils.py       # 模型构建和评估脚本
│       └── recommend.py         # 推荐逻辑脚本
│
├── frontend/                    # 前端应用
│   ├── public/                  # 公共资源文件夹
│   ├── src/                     # 源代码文件夹
│   │   ├── App.js               # 主组件
│   │   ├── components/          # 组件文件夹
│   │   │   └── RecommendationList.js  # 推荐列表组件
│   │   ├── services/            # 服务调用脚本
│   │   │   └── api.js           # API调用脚本
│   │   └── index.js             # 应用入口
│   ├── package.json             # 前端依赖项
│   └── package-lock.json        # 锁定前端依赖版本
│
├── docker-compose.yml           # Docker Compose 配置文件
│
├── Dockerfile                   # Docker 镜像构建文件
│
└── README.md                    # 项目文档

文件和文件夹说明

  1. backend/:后端服务相关的文件和配置。

    • app.py:Flask 应用的主文件,定义了 RESTful API 接口。
    • models/:保存训练好的模型文件。
      • mf_model.h5:协同过滤模型文件。
      • mixed_model.h5:混合推荐模型文件。
    • requirements.txt:列出后端所需的 Python 包及其版本。
    • utils/:实用工具脚本。
      • data_utils.py:数据预处理脚本,如数据清洗、特征构建等。
      • model_utils.py:模型构建和评估脚本,包括模型训练、评估指标计算等。
      • recommend.py:推荐逻辑脚本,定义了推荐算法的核心逻辑。
  2. frontend/:前端应用的源代码及相关配置。

    • public/:公共资源文件夹,如静态文件、图标等。
    • src/:源代码文件夹。
      • App.js:主组件文件,负责渲染推荐列表和其他 UI 元素。
      • components/:包含各个功能组件的文件夹。
        • RecommendationList.js:展示推荐列表的组件。
      • services/:服务调用脚本,如 API 请求等。
        • api.js:封装了与后端服务交互的 API 调用。
      • index.js:前端应用的入口文件。
    • package.json:前端应用的依赖项配置文件。
    • package-lock.json:锁定前端依赖的具体版本。
  3. docker-compose.yml:Docker Compose 配置文件,用于定义多个容器的服务。

    • 定义了后端服务和任何其他依赖的服务(如数据库)。
  4. Dockerfile:用于构建 Docker 镜像的文件。

    • 包含了构建镜像所需的指令,如安装依赖、复制文件等。
  5. README.md:项目文档,描述了项目的目标、架构、安装指南和使用方法等。

这个文件结构为商品推荐系统的实现提供了一个清晰的组织方式,使得每个部分都易于管理和维护。您可以根据实际需求调整各个组件的位置和命名。

 五、编写代码

根据项目概述和架构设计来构建一个完整的商品推荐系统。我们将分步骤进行,从数据准备到模型训练,再到服务部署和前端展示。 包括实现了更加细致的模型评估、模型训练的超参数调优、服务的安全性和稳定性增强以及前端交互和用户体验的改进。

1. 数据层

数据预处理

  • 数据源:我们将使用模拟数据集来演示整个流程。
  • 数据清洗与处理:使用Pandas进行数据清洗和预处理。
  • 特征工程:构建用户和商品的特征表示。
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split

# 加载数据
users_data = pd.read_csv('users.csv')
items_data = pd.read_csv('items.csv')
interactions_data = pd.read_csv('interactions.csv')

# 数据清洗
# 假设数据中存在缺失值
users_data.fillna(0, inplace=True)
items_data.fillna('unknown', inplace=True)

# 特征工程
# 商品特征向量化
tfidf = TfidfVectorizer()
items_data['description'] = items_data['description'].fillna('unknown')
items_tfidf = tfidf.fit_transform(items_data['description'])

# 用户购买历史向量化
user_item_matrix = pd.pivot_table(interactions_data, values='rating', index='user_id', columns='item_id', fill_value=0)

# 数据标准化
scaler = MinMaxScaler()
user_item_matrix = pd.DataFrame(scaler.fit_transform(user_item_matrix), index=user_item_matrix.index, columns=user_item_matrix.columns)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(user_item_matrix.values, user_item_matrix.index, test_size=0.2, random_state=42)

2. 模型层

模型构建

  • 基于内容的推荐:使用简单的神经网络模型学习商品特征与用户历史购买商品特征之间的相似度。
  • 协同过滤:使用矩阵分解技术进行用户-商品交互矩阵的分解。
  • 混合推荐:结合内容特征和协同过滤,提升推荐准确性。
import tensorflow as tf
from tensorflow.keras.layers import Embedding, Flatten, Dense, Input, Dot
from tensorflow.keras.models import Model
from tensorflow.keras.regularizers import l2

# 参数设置
num_users = len(users_data)
num_items = len(items_data)
embedding_size = 32

# 协同过滤模型
user_input = Input(shape=(1,))
item_input = Input(shape=(1,))

user_embedding = Embedding(input_dim=num_users, output_dim=embedding_size, embeddings_regularizer=l2(1e-6))(user_input)
item_embedding = Embedding(input_dim=num_items, output_dim=embedding_size, embeddings_regularizer=l2(1e-6))(item_input)

user_flatten = Flatten()(user_embedding)
item_flatten = Flatten()(item_embedding)

dot_product = Dot(axes=1)([user_flatten, item_flatten])

mf_model = Model(inputs=[user_input, item_input], outputs=dot_product)
mf_model.compile(optimizer='adam', loss='mse')

# 内容推荐模型
item_description_input = Input(shape=(items_tfidf.shape[1],))
item_description_embedding = Dense(64, activation='relu')(item_description_input)
item_description_output = Dense(embedding_size, activation='linear')(item_description_embedding)

content_model = Model(inputs=item_description_input, outputs=item_description_output)

# 混合模型
user_embedding_mixed = Embedding(input_dim=num_users, output_dim=embedding_size, embeddings_regularizer=l2(1e-6))(user_input)
item_embedding_mixed = content_model(item_description_input)

user_flatten_mixed = Flatten()(user_embedding_mixed)
item_flatten_mixed = Flatten()(item_embedding_mixed)

dot_product_mixed = Dot(axes=1)([user_flatten_mixed, item_flatten_mixed])

mixed_model = Model(inputs=[user_input, item_description_input], outputs=dot_product_mixed)
mixed_model.compile(optimizer='adam', loss='mse')

3. 服务层

推荐API

  • Flask应用:提供RESTful API接口。
from flask import Flask, request, jsonify
app = Flask(__name__)

@app.route('/recommend/<int:user_id>', methods=['GET'])
def recommend(user_id):
    # 假设这里我们已经有了一个训练好的模型
    # user_id 是请求中传入的用户ID
    # 我们将使用训练好的模型来预测用户对商品的评分
    # 并返回推荐的商品列表
    recommended_items = mixed_model.predict([np.array([user_id]), items_tfidf])
    top_items = np.argsort(recommended_items)[::-1][:10]
    top_items = items_data.loc[top_items]['item_id'].tolist()
    return jsonify({'recommended_items': top_items})

if __name__ == '__main__':
    app.run(debug=True)

4. 前端展示

前端页面

  • React应用:使用React来开发前端页面,展示推荐结果。
// App.js
import React, { useEffect, useState } from 'react';
import axios from 'axios';

function App() {
  const [recommendedItems, setRecommendedItems] = useState([]);

  useEffect(() => {
    async function fetchRecommendations() {
      try {
        const response = await axios.get(`http://localhost:5000/recommend/1`);
        setRecommendedItems(response.data.recommended_items);
      } catch (error) {
        console.error('Error fetching recommendations:', error);
      }
    }

    fetchRecommendations();
  }, []);

  return (
    <div>
      <h1>商品推荐</h1>
      <ul>
        {recommendedItems.map((itemId, index) => (
          <li key={index}>{itemId}</li>
        ))}
      </ul>
    </div>
  );
}

export default App;

以上是一个完整的商品推荐系统项目的实现方案。我们从数据预处理开始,构建了基于内容的推荐模型、协同过滤模型和混合推荐模型,并实现了RESTful API和前端展示。接下来我们将继续完善这个项目,包括:

  1. 模型训练:训练协同过滤模型和混合推荐模型。
  2. 模型评估:评估模型的性能。
  3. 部署服务:将推荐服务部署到服务器上。
  4. 前端集成:将前端应用与后端服务集成起来。

5. 模型训练

# 训练协同过滤模型
mf_model.fit(
    [X_train[:, 0], X_train[:, 1]], y_train,
    epochs=10, batch_size=64,
    validation_data=([X_test[:, 0], X_test[:, 1]], y_test),
    verbose=1
)

# 训练混合推荐模型
# 假设 items_tfidf 已经是经过预处理的特征矩阵
mixed_model.fit(
    [X_train[:, 0], items_tfidf],
    y_train,
    epochs=10, batch_size=64,
    validation_data=([X_test[:, 0], items_tfidf], y_test),
    verbose=1
)

6. 模型评估

# 评估协同过滤模型
mf_eval = mf_model.evaluate([X_test[:, 0], X_test[:, 1]], y_test, verbose=0)
print(f'MF Model Loss: {mf_eval}')

# 评估混合推荐模型
mixed_eval = mixed_model.evaluate([X_test[:, 0], items_tfidf], y_test, verbose=0)
print(f'Mixed Model Loss: {mixed_eval}')

 7. 部署服务

from flask import Flask, request, jsonify
import numpy as np

app = Flask(__name__)

@app.route('/recommend/<int:user_id>', methods=['GET'])
def recommend(user_id):
    # 使用训练好的模型来预测用户对商品的评分
    # 并返回推荐的商品列表
    recommended_items = mixed_model.predict([np.array([user_id]), items_tfidf])
    top_items = np.argsort(recommended_items)[::-1][:10]
    top_items = items_data.loc[top_items]['item_id'].tolist()
    return jsonify({'recommended_items': top_items})

if __name__ == '__main__':
    app.run(debug=True)

8. 前端集成

// App.js
import React, { useEffect, useState } from 'react';
import axios from 'axios';

function App() {
  const [recommendedItems, setRecommendedItems] = useState([]);

  useEffect(() => {
    async function fetchRecommendations() {
      try {
        const response = await axios.get(`http://localhost:5000/recommend/1`);
        setRecommendedItems(response.data.recommended_items);
      } catch (error) {
        console.error('Error fetching recommendations:', error);
      }
    }

    fetchRecommendations();
  }, []);

  return (
    <div>
      <h1>商品推荐</h1>
      <ul>
        {recommendedItems.map((itemId, index) => (
          <li key={index}>{itemId}</li>
        ))}
      </ul>
    </div>
  );
}

export default App;

 9. 运行服务

确保安装了所有依赖项,然后在终端中运行以下命令来启动后端服务: 

cd backend
pip install -r requirements.txt
flask run

 确保前端应用已安装所有依赖项,并启动前端应用:

cd frontend
npm install
npm start

 至此,我们已经完成了整个商品推荐系统的构建,从数据预处理到模型训练、模型评估、服务部署以及前端展示。接下来我们将继续完善这个项目,包括:

  1. 模型评估的增强:添加更多评估指标,如精确率、召回率、F1分数和NDCG。
  2. 模型持久化:保存和加载训练好的模型。
  3. 服务的容器化:使用Docker将服务打包成容器,便于部署和管理。
  4. 前端样式和交互的增强:改善前端界面的样式和交互体验。

10. 模型评估的增强

from sklearn.metrics import precision_score, recall_score, f1_score, ndcg_score
from sklearn.preprocessing import label_binarize
import numpy as np

# 假设我们已经有了一个函数可以获取用户的真正喜欢的物品列表
def get_true_positives(user_id):
    true_positives = interactions_data[interactions_data['user_id'] == user_id]['item_id'].tolist()
    return true_positives

# 计算 Precision, Recall, F1 Score
def calculate_precision_recall_f1(user_id, top_n=10):
    recommended_items = recommend_items(user_id, top_n=top_n)
    true_positives = get_true_positives(user_id)
    
    # 将推荐列表和真正喜欢的物品列表转换成二进制形式
    y_true = label_binarize(true_positives, classes=list(range(num_items))).sum(axis=0)
    y_pred = label_binarize(recommended_items, classes=list(range(num_items))).sum(axis=0)
    
    precision = precision_score(y_true, y_pred, average='micro')
    recall = recall_score(y_true, y_pred, average='micro')
    f1 = f1_score(y_true, y_pred, average='micro')
    
    return precision, recall, f1

# 计算 NDCG
def calculate_ndcg(user_id, top_n=10):
    recommended_items = recommend_items(user_id, top_n=top_n)
    true_positives = get_true_positives(user_id)
    
    def dcg_at_k(r, k):
        r = np.asfarray(r)[:k]
        return np.sum((2**r - 1) / np.log2(np.arange(2, r.size + 2)))

    def ndcg_at_k(r, k):
        dcg_max = dcg_at_k(sorted(r, reverse=True), k)
        if not dcg_max:
            return 0.
        return dcg_at_k(r, k) / dcg_max

    # 排序真正的评分
    true_ratings = interactions_data[interactions_data['user_id'] == user_id]['rating'].values
    sorted_ratings = np.zeros(len(true_ratings))
    for i, item in enumerate(true_positives):
        sorted_ratings[i] = true_ratings[np.where(items_data['item_id'] == item)[0][0]]

    # 计算 NDCG@k
    ndcg = ndcg_at_k(sorted_ratings, top_n)
    return ndcg

# 测试计算
user_id = 1  # 示例用户ID
top_n = 10  # 推荐列表长度

precision, recall, f1 = calculate_precision_recall_f1(user_id, top_n)
ndcg = calculate_ndcg(user_id, top_n)

print(f"User {user_id} - Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1:.4f}, NDCG@{top_n}: {ndcg:.4f}")

11. 模型持久化

# 保存模型
mf_model.save('models/mf_model.h5')
mixed_model.save('models/mixed_model.h5')

# 加载模型
from tensorflow.keras.models import load_model

mf_model = load_model('models/mf_model.h5')
mixed_model = load_model('models/mixed_model.h5')

 12. 服务的容器化

 Dockerfile

# 使用官方 Python 运行时作为父镜像
FROM python:3.8-slim

# 设置工作目录
WORKDIR /app

# 将当前目录的内容复制到容器的 /app 中
COPY . /app

# 安装依赖包
RUN pip install --no-cache-dir -r requirements.txt

# 设置环境变量
ENV FLASK_APP=app.py
ENV FLASK_RUN_HOST=0.0.0.0

# 暴露端口
EXPOSE 5000

# 运行 Flask 应用
CMD ["flask", "run"]

 构建和运行 Docker 容器

docker build -t recommendation-service .
docker run -p 5000:5000 recommendation-service

13. 前端样式和交互的增强

// App.js
import React, { useEffect, useState } from 'react';
import axios from 'axios';
import './App.css';  // 导入样式文件

function App() {
  const [recommendedItems, setRecommendedItems] = useState([]);

  useEffect(() => {
    async function fetchRecommendations() {
      try {
        const response = await axios.get(`http://localhost:5000/recommend/1`);
        setRecommendedItems(response.data.recommended_items);
      } catch (error) {
        console.error('Error fetching recommendations:', error);
      }
    }

    fetchRecommendations();
  }, []);

  return (
    <div className="app-container">
      <h1 className="title">商品推荐</h1>
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            <span className="item-id">{itemId}</span>
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

 App.css

.app-container {
  display: flex;
  flex-direction: column;
  align-items: center;
  padding: 20px;
}

.title {
  font-size: 24px;
  margin-bottom: 20px;
}

.recommendations-list {
  list-style-type: none;
  padding-left: 0;
}

.recommendation-item {
  margin-bottom: 10px;
}

.item-id {
  font-weight: bold;
}

 至此,我们已经进一步完善了商品推荐系统项目,包括增强了模型评估、实现了模型的持久化、服务的容器化以及前端样式的增强。接下来我们将继续完善这个项目,包括:

  1. 模型评估的自动化:使用交叉验证来评估模型的泛化能力。
  2. 模型训练的监控:使用TensorBoard监控训练过程。
  3. 服务的日志记录:添加日志记录以跟踪服务的状态和错误。
  4. 前端动态推荐:允许用户通过前端界面实时获取推荐结果。

14. 模型评估的自动化 

from sklearn.model_selection import KFold

# 使用 K-Fold 交叉验证
kf = KFold(n_splits=5, shuffle=True, random_state=42)

# 存储评估结果
eval_results = []

for train_index, val_index in kf.split(X_train):
    X_train_fold, X_val_fold = X_train[train_index], X_train[val_index]
    y_train_fold, y_val_fold = y_train[train_index], y_train[val_index]

    # 训练模型
    mf_model.fit(
        [X_train_fold[:, 0], X_train_fold[:, 1]], y_train_fold,
        epochs=10, batch_size=64,
        validation_data=([X_val_fold[:, 0], X_val_fold[:, 1]], y_val_fold),
        verbose=0
    )

    # 评估模型
    mf_eval = mf_model.evaluate([X_val_fold[:, 0], X_val_fold[:, 1]], y_val_fold, verbose=0)
    eval_results.append(mf_eval)

# 打印平均评估结果
avg_loss = np.mean(eval_results)
print(f'Average Loss: {avg_loss}')

 15. 模型训练的监控

# 使用 TensorBoard 监控训练
import os
from tensorflow.keras.callbacks import TensorBoard

log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=1)

# 训练模型
mf_model.fit(
    [X_train[:, 0], X_train[:, 1]], y_train,
    epochs=10, batch_size=64,
    validation_data=([X_test[:, 0], X_test[:, 1]], y_test),
    callbacks=[tensorboard_callback],
    verbose=1
)

 16. 服务的日志记录

import logging
from flask import Flask, request, jsonify

app = Flask(__name__)
logging.basicConfig(level=logging.INFO)

@app.route('/recommend/<int:user_id>', methods=['GET'])
def recommend(user_id):
    logging.info(f'Received request for user ID: {user_id}')
    # 使用训练好的模型来预测用户对商品的评分
    # 并返回推荐的商品列表
    recommended_items = mixed_model.predict([np.array([user_id]), items_tfidf])
    top_items = np.argsort(recommended_items)[::-1][:10]
    top_items = items_data.loc[top_items]['item_id'].tolist()
    logging.info(f'Returning recommendations: {top_items}')
    return jsonify({'recommended_items': top_items})

if __name__ == '__main__':
    app.run(debug=True)

 17. 前端动态推荐

// App.js
import React, { useState, useEffect } from 'react';
import axios from 'axios';
import './App.css';  // 导入样式文件

function App() {
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);

  useEffect(() => {
    async function fetchRecommendations() {
      try {
        const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
        setRecommendedItems(response.data.recommended_items);
      } catch (error) {
        console.error('Error fetching recommendations:', error);
      }
    }

    fetchRecommendations();
  }, [userId]);

  return (
    <div className="app-container">
      <h1 className="title">商品推荐</h1>
      <input
        type="number"
        value={userId}
        onChange={(e) => setUserId(e.target.value)}
        placeholder="Enter User ID"
        className="user-input"
      />
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            <span className="item-id">{itemId}</span>
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

 App.css

.app-container {
  display: flex;
  flex-direction: column;
  align-items: center;
  padding: 20px;
}

.title {
  font-size: 24px;
  margin-bottom: 20px;
}

.user-input {
  margin-bottom: 20px;
  padding: 10px;
  font-size: 16px;
  width: 200px;
}

.recommendations-list {
  list-style-type: none;
  padding-left: 0;
}

.recommendation-item {
  margin-bottom: 10px;
}

.item-id {
  font-weight: bold;
}

 至此,我们已经进一步完善了商品推荐系统项目,包括实现了模型评估的自动化、模型训练的监控、服务的日志记录以及前端动态推荐。接下来我们将继续完善这个项目,包括:

  1. 模型评估的进一步增强:使用更加细致的评估指标,如MAP(Mean Average Precision)和MRR(Mean Reciprocal Rank)。
  2. 模型训练的超参数调优:使用网格搜索或随机搜索来寻找最佳超参数组合。
  3. 服务的安全性和稳定性:增加认证和限流机制以保护服务。
  4. 前端交互和用户体验的改进:添加用户反馈机制,允许用户对推荐结果进行反馈。

18. 模型评估的进一步增强

from sklearn.metrics import average_precision_score, mean_reciprocal_rank

# 计算 MAP (Mean Average Precision)
def calculate_map(user_id, top_n=10):
    recommended_items = recommend_items(user_id, top_n=top_n)
    true_positives = get_true_positives(user_id)
    
    # 将推荐列表和真正喜欢的物品列表转换成二进制形式
    y_true = label_binarize(true_positives, classes=list(range(num_items))).sum(axis=0)
    y_scores = np.zeros_like(y_true)
    for i, item in enumerate(recommended_items):
        y_scores[item] = i + 1
    
    map_score = average_precision_score(y_true, y_scores)
    return map_score

# 计算 MRR (Mean Reciprocal Rank)
def calculate_mrr(user_id, top_n=10):
    recommended_items = recommend_items(user_id, top_n=top_n)
    true_positives = get_true_positives(user_id)
    
    rank = None
    for i, item in enumerate(recommended_items):
        if item in true_positives:
            rank = i + 1
            break
    
    if rank is None:
        mrr = 0
    else:
        mrr = 1 / rank
    
    return mrr

# 测试计算
user_id = 1  # 示例用户ID
top_n = 10  # 推荐列表长度

map_score = calculate_map(user_id, top_n)
mrr = calculate_mrr(user_id, top_n)

print(f"User {user_id} - MAP: {map_score:.4f}, MRR: {mrr:.4f}")

 19. 模型训练的超参数调优

from sklearn.model_selection import GridSearchCV
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor

# 定义模型
def create_model(embedding_size=32):
    user_input = Input(shape=(1,))
    item_input = Input(shape=(1,))

    user_embedding = Embedding(input_dim=num_users, output_dim=embedding_size, embeddings_regularizer=l2(1e-6))(user_input)
    item_embedding = Embedding(input_dim=num_items, output_dim=embedding_size, embeddings_regularizer=l2(1e-6))(item_input)

    user_flatten = Flatten()(user_embedding)
    item_flatten = Flatten()(item_embedding)

    dot_product = Dot(axes=1)([user_flatten, item_flatten])

    model = Model(inputs=[user_input, item_input], outputs=dot_product)
    model.compile(optimizer='adam', loss='mse')
    return model

# 包装模型
model = KerasRegressor(build_fn=create_model, verbose=0)

# 定义参数网格
param_grid = {
    'embedding_size': [16, 32, 64],
    'epochs': [5, 10, 15],
    'batch_size': [32, 64, 128]
}

# 使用 GridSearchCV 进行超参数调优
grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, scoring='neg_mean_squared_error')
grid_result = grid.fit([X_train[:, 0], X_train[:, 1]], y_train)

# 输出最佳参数
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

 20. 服务的安全性和稳定性

from flask import Flask, request, jsonify
from functools import wraps
import logging
import time

app = Flask(__name__)
logging.basicConfig(level=logging.INFO)

# 认证装饰器
def authenticate(f):
    @wraps(f)
    def decorated(*args, **kwargs):
        auth = request.authorization
        if not auth or not auth.username == 'admin' or not auth.password == 'secret':
            return jsonify({'message': 'Authentication failed'}), 401
        return f(*args, **kwargs)
    return decorated

# 限流装饰器
def rate_limit(limit=100, per=60*60):
    def decorator(f):
        request_log = []
        @wraps(f)
        def decorated_function(*args, **kwargs):
            while request_log and request_log[-1] + per < time.time():
                request_log.pop()
            if len(request_log) >= limit:
                return jsonify({'message': 'Too many requests'}), 429
            request_log.append(time.time())
            return f(*args, **kwargs)
        return decorated_function
    return decorator

@app.route('/recommend/<int:user_id>', methods=['GET'])
@authenticate
@rate_limit(limit=100, per=60*60)
def recommend(user_id):
    logging.info(f'Received request for user ID: {user_id}')
    # 使用训练好的模型来预测用户对商品的评分
    # 并返回推荐的商品列表
    recommended_items = mixed_model.predict([np.array([user_id]), items_tfidf])
    top_items = np.argsort(recommended_items)[::-1][:10]
    top_items = items_data.loc[top_items]['item_id'].tolist()
    logging.info(f'Returning recommendations: {top_items}')
    return jsonify({'recommended_items': top_items})

if __name__ == '__main__':
    app.run(debug=True)

 21. 前端交互和用户体验的改进

// App.js
import React, { useState, useEffect } from 'react';
import axios from 'axios';
import './App.css';  // 导入样式文件

function App() {
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);
  const [feedback, setFeedback] = useState({});

  useEffect(() => {
    async function fetchRecommendations() {
      try {
        const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
        setRecommendedItems(response.data.recommended_items);
      } catch (error) {
        console.error('Error fetching recommendations:', error);
      }
    }

    fetchRecommendations();
  }, [userId]);

  const handleFeedback = async (itemId, feedbackType) => {
    try {
      const response = await axios.post(`http://localhost:5000/feedback`, { itemId, feedbackType });
      console.log('Feedback sent:', response.data);
      setFeedback(prevFeedback => ({ ...prevFeedback, [itemId]: feedbackType }));
    } catch (error) {
      console.error('Error sending feedback:', error);
    }
  };

  return (
    <div className="app-container">
      <h1 className="title">商品推荐</h1>
      <input
        type="number"
        value={userId}
        onChange={(e) => setUserId(e.target.value)}
        placeholder="Enter User ID"
        className="user-input"
      />
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            <span className="item-id">{itemId}</span>
            <button onClick={() => handleFeedback(itemId, 'like')} className="like-button">
              Like
            </button>
            <button onClick={() => handleFeedback(itemId, 'dislike')} className="dislike-button">
              Dislike
            </button>
            {feedback[itemId] === 'like' && <span className="feedback-text">Liked</span>}
            {feedback[itemId] === 'dislike' && <span className="feedback-text">Disliked</span>}
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

至此,我们已经进一步完善了商品推荐系统项目,包括实现了更加细致的模型评估、模型训练的超参数调优、服务的安全性和稳定性增强以及前端交互和用户体验的改进。接下来我们将继续完善这个项目,包括:

  1. 模型的持续集成和部署:使用 CI/CD 工具(如 GitHub Actions 或 Jenkins)自动化构建、测试和部署流程。
  2. 前端的国际化支持:添加多语言支持以适应不同地区的用户。
  3. 服务的可扩展性和容错性:使用 Kubernetes 或 Docker Swarm 管理服务的集群部署。
  4. 前端的性能优化:添加懒加载、缓存策略等以提高前端应用的性能。

22. 模型的持续集成和部署

GitHub Actions 配置文件 .github/workflows/ci-cd.yml

name: CI/CD Pipeline

on:
  push:
    branches:
      - main

jobs:
  build-and-deploy:
    runs-on: ubuntu-latest

    steps:
    - name: Checkout code
      uses: actions/checkout@v2

    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: 3.8

    - name: Install dependencies
      run: |
        python -m pip install --upgrade pip
        pip install -r backend/requirements.txt

    - name: Build Docker image
      run: |
        docker build -t recommendation-service .

    - name: Run tests
      run: |
        pytest backend/tests/

    - name: Deploy to production
      env:
        DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }}
        DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
      run: |
        echo $DOCKER_PASSWORD | docker login -u $DOCKER_USERNAME --password-stdin
        docker tag recommendation-service registry.example.com/recommendation-service:latest
        docker push registry.example.com/recommendation-service:latest

23. 前端的国际化支持

// App.js
import React, { useState, useEffect } from 'react';
import axios from 'axios';
import i18n from 'i18next';
import { useTranslation, initReactI18next } from 'react-i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import './App.css';  // 导入样式文件

// 初始化 i18n
i18n
  .use(initReactI18next) // passes i18n down to react-i18next
  .use(LanguageDetector) // detect user language
  .init({
    resources: {
      en: { translation: { title: 'Product Recommendations', like: 'Like', dislike: 'Dislike' } },
      es: { translation: { title: 'Recomendaciones de Productos', like: 'Me Gusta', dislike: 'No Me Gusta' } }
    },
    fallbackLng: 'en',
    interpolation: {
      escapeValue: false // react already safes from xss
    }
  });

function App() {
  const { t } = useTranslation();
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);
  const [feedback, setFeedback] = useState({});

  useEffect(() => {
    async function fetchRecommendations() {
      try {
        const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
        setRecommendedItems(response.data.recommended_items);
      } catch (error) {
        console.error('Error fetching recommendations:', error);
      }
    }

    fetchRecommendations();
  }, [userId]);

  const handleFeedback = async (itemId, feedbackType) => {
    try {
      const response = await axios.post(`http://localhost:5000/feedback`, { itemId, feedbackType });
      console.log('Feedback sent:', response.data);
      setFeedback(prevFeedback => ({ ...prevFeedback, [itemId]: feedbackType }));
    } catch (error) {
      console.error('Error sending feedback:', error);
    }
  };

  return (
    <div className="app-container">
      <h1 className="title">{t('title')}</h1>
      <input
        type="number"
        value={userId}
        onChange={(e) => setUserId(e.target.value)}
        placeholder="Enter User ID"
        className="user-input"
      />
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            <span className="item-id">{itemId}</span>
            <button onClick={() => handleFeedback(itemId, 'like')} className="like-button">
              {t('like')}
            </button>
            <button onClick={() => handleFeedback(itemId, 'dislike')} className="dislike-button">
              {t('dislike')}
            </button>
            {feedback[itemId] === 'like' && <span className="feedback-text">Liked</span>}
            {feedback[itemId] === 'dislike' && <span className="feedback-text">Disliked</span>}
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

24. 服务的可扩展性和容错性

Docker Compose 配置文件 docker-compose.yml

version: '3.8'

services:
  recommendation-service:
    build: ./backend
    ports:
      - "5000:5000"
    restart: always
    depends_on:
      - db

  db:
    image: postgres:latest
    environment:
      POSTGRES_USER: recommendation
      POSTGRES_PASSWORD: password
      POSTGRES_DB: recommendation_db
    volumes:
      - db-data:/var/lib/postgresql/data
    ports:
      - "5432:5432"

volumes:
  db-data:

25. 前端的性能优化

// App.js
import React, { useState, useEffect, useCallback } from 'react';
import axios from 'axios';
import i18n from 'i18next';
import { useTranslation, initReactI18next } from 'react-i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import './App.css';  // 导入样式文件

// 初始化 i18n
i18n
  .use(initReactI18next) // passes i18n down to react-i18next
  .use(LanguageDetector) // detect user language
  .init({
    resources: {
      en: { translation: { title: 'Product Recommendations', like: 'Like', dislike: 'Dislike' } },
      es: { translation: { title: 'Recomendaciones de Productos', like: 'Me Gusta', dislike: 'No Me Gusta' } }
    },
    fallbackLng: 'en',
    interpolation: {
      escapeValue: false // react already safes from xss
    }
  });

function App() {
  const { t } = useTranslation();
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);
  const [feedback, setFeedback] = useState({});

  const fetchRecommendations = useCallback(async () => {
    try {
      const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
      setRecommendedItems(response.data.recommended_items);
    } catch (error) {
      console.error('Error fetching recommendations:', error);
    }
  }, [userId]);

  useEffect(() => {
    fetchRecommendations();
  }, [fetchRecommendations]);

  const handleFeedback = async (itemId, feedbackType) => {
    try {
      const response = await axios.post(`http://localhost:5000/feedback`, { itemId, feedbackType });
      console.log('Feedback sent:', response.data);
      setFeedback(prevFeedback => ({ ...prevFeedback, [itemId]: feedbackType }));
    } catch (error) {
      console.error('Error sending feedback:', error);
    }
  };

  return (
    <div className="app-container">
      <h1 className="title">{t('title')}</h1>
      <input
        type="number"
        value={userId}
        onChange={(e) => setUserId(e.target.value)}
        placeholder="Enter User ID"
        className="user-input"
      />
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            <span className="item-id">{itemId}</span>
            <button onClick={() => handleFeedback(itemId, 'like')} className="like-button">
              {t('like')}
            </button>
            <button onClick={() => handleFeedback(itemId, 'dislike')} className="dislike-button">
              {t('dislike')}
            </button>
            {feedback[itemId] === 'like' && <span className="feedback-text">Liked</span>}
            {feedback[itemId] === 'dislike' && <span className="feedback-text">Disliked</span>}
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

至此,我们已经进一步完善了商品推荐系统项目,包括实现了模型的持续集成和部署、前端的国际化支持、服务的可扩展性和容错性增强以及前端的性能优化。接下来我们将继续完善这个项目,包括:

  1. 模型的版本控制和回滚:使用模型版本控制系统(如MLflow)来管理模型的版本。
  2. 前端的错误处理和日志记录:添加错误处理机制和日志记录以改善调试体验。
  3. 服务的负载均衡和故障转移:使用负载均衡器(如Nginx或HAProxy)来分发请求和处理故障。
  4. 前端的离线访问支持:使用Service Workers实现离线访问和缓存策略。

26. 模型的版本控制和回滚

MLflow 配置

  1. 安装 MLflow

    pip install mlflow

     2.创建 MLflow 实验

import mlflow
mlflow.set_tracking_uri("http://localhost:5000")  # 设置 MLflow 服务器地址
mlflow.set_experiment("recommendation-experiment")

     3.记录模型和参数

with mlflow.start_run():
    # 训练模型
    mf_model.fit(
        [X_train[:, 0], X_train[:, 1]], y_train,
        epochs=10, batch_size=64,
        validation_data=([X_test[:, 0], X_test[:, 1]], y_test),
        verbose=1
    )
    
    # 评估模型
    mf_eval = mf_model.evaluate([X_test[:, 0], X_test[:, 1]], y_test, verbose=0)
    
    # 记录模型和参数
    mlflow.keras.log_model(mf_model, "mf-model")
    mlflow.log_metric("loss", mf_eval)
    mlflow.log_param("epochs", 10)
    mlflow.log_param("batch_size", 64)

      4.模型回滚

# 获取模型版本
client = mlflow.tracking.MlflowClient()
experiment_id = mlflow.get_experiment_by_name("recommendation-experiment").experiment_id
runs = client.search_runs(experiment_ids=[experiment_id], max_results=100)

# 回滚到特定版本
best_run = min(runs, key=lambda r: r.data.metrics["loss"])
model_uri = f"runs:/{best_run.info.run_id}/mf-model"
mf_model = mlflow.keras.load_model(model_uri)

27. 前端的错误处理和日志记录

// App.js
import React, { useState, useEffect, useCallback } from 'react';
import axios from 'axios';
import i18n from 'i18next';
import { useTranslation, initReactI18next } from 'react-i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import './App.css';  // 导入样式文件

// 初始化 i18n
i18n
  .use(initReactI18next) // passes i18n down to react-i18next
  .use(LanguageDetector) // detect user language
  .init({
    resources: {
      en: { translation: { title: 'Product Recommendations', like: 'Like', dislike: 'Dislike' } },
      es: { translation: { title: 'Recomendaciones de Productos', like: 'Me Gusta', dislike: 'No Me Gusta' } }
    },
    fallbackLng: 'en',
    interpolation: {
      escapeValue: false // react already safes from xss
    }
  });

function App() {
  const { t } = useTranslation();
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);
  const [feedback, setFeedback] = useState({});
  const [loading, setLoading] = useState(false);
  const [error, setError] = useState(null);

  const fetchRecommendations = useCallback(async () => {
    try {
      setLoading(true);
      const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
      setRecommendedItems(response.data.recommended_items);
    } catch (error) {
      setError(error);
    } finally {
      setLoading(false);
    }
  }, [userId]);

  useEffect(() => {
    fetchRecommendations();
  }, [fetchRecommendations]);

  const handleFeedback = async (itemId, feedbackType) => {
    try {
      const response = await axios.post(`http://localhost:5000/feedback`, { itemId, feedbackType });
      console.log('Feedback sent:', response.data);
      setFeedback(prevFeedback => ({ ...prevFeedback, [itemId]: feedbackType }));
    } catch (error) {
      setError(error);
    }
  };

  return (
    <div className="app-container">
      <h1 className="title">{t('title')}</h1>
      <input
        type="number"
        value={userId}
        onChange={(e) => setUserId(e.target.value)}
        placeholder="Enter User ID"
        className="user-input"
      />
      {loading && <p>Loading...</p>}
      {error && <p>Error: {error.message}</p>}
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            <span className="item-id">{itemId}</span>
            <button onClick={() => handleFeedback(itemId, 'like')} className="like-button">
              {t('like')}
            </button>
            <button onClick={() => handleFeedback(itemId, 'dislike')} className="dislike-button">
              {t('dislike')}
            </button>
            {feedback[itemId] === 'like' && <span className="feedback-text">Liked</span>}
            {feedback[itemId] === 'dislike' && <span className="feedback-text">Disliked</span>}
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

28. 服务的负载均衡和故障转移

Nginx 配置文件 nginx.conf

http {
    upstream recommendation-backend {
        server recommendation-service1:5000;
        server recommendation-service2:5000;
        server recommendation-service3:5000;
    }

    server {
        listen 80;

        location / {
            proxy_pass http://recommendation-backend;
            proxy_set_header Host $host;
            proxy_set_header X-Real-IP $remote_addr;
            proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
            proxy_set_header X-Forwarded-Proto $scheme;
        }
    }
}

29. 前端的离线访问支持

Service Worker 配置

  1. 安装 Workbox

npm install workbox-webpack-plugin

     2.Webpack 配置

// webpack.config.js
const WorkboxPlugin = require('workbox-webpack-plugin');

module.exports = {
    // ...
    plugins: [
        new WorkboxPlugin.GenerateSW({
            clientsClaim: true,
            skipWaiting: true,
            runtimeCaching: [{
                urlPattern: /^https:\/\/.*\.example\.com/,
                handler: 'CacheFirst',
                options: {
                    cacheName: 'example-cache',
                    expiration: {
                        maxEntries: 50,
                        maxAgeSeconds: 30 * 24 * 60 * 60, // 30 Days
                    },
                    cacheableResponse: {
                        statuses: [0, 200],
                    },
                },
            }],
        }),
    ],
};

     3.注册 Service Worker

// index.js
if ('serviceWorker' in navigator) {
    window.addEventListener('load', function() {
        navigator.serviceWorker.register('/service-worker.js').then(function(registration) {
            console.log('Service Worker registered with scope:', registration.scope);
        }).catch(function(error) {
            console.log('Service Worker registration failed:', error);
        });
    });
}

 至此,我们已经进一步完善了商品推荐系统项目,包括实现了模型的版本控制和回滚、前端的错误处理和日志记录、服务的负载均衡和故障转移以及前端的离线访问支持。接下来我们将继续完善这个项目,包括:

  1. 模型的在线A/B测试:通过部署多个模型版本并在线对比它们的表现。
  2. 前端的性能监控:使用工具(如 Google Lighthouse 或 Sentry)监测前端应用的性能。
  3. 服务的API文档生成:使用 Swagger 或类似的工具自动生成API文档。
  4. 前端的用户行为分析:集成分析工具(如 Google Analytics 或 Mixpanel)以收集用户行为数据。

30. 模型的在线A/B测试

# 在后端服务中添加A/B测试逻辑
from flask import Flask, request, jsonify
import random
import logging
from flask import Flask, request, jsonify

app = Flask(__name__)
logging.basicConfig(level=logging.INFO)

# A/B 测试逻辑
def ab_test(user_id):
    # 随机选择一个模型版本
    model_version = random.choice(['mf_model', 'mixed_model'])
    return model_version

@app.route('/recommend/<int:user_id>', methods=['GET'])
def recommend(user_id):
    logging.info(f'Received request for user ID: {user_id}')
    
    # 选择模型版本
    model_version = ab_test(user_id)
    
    # 使用训练好的模型来预测用户对商品的评分
    # 并返回推荐的商品列表
    if model_version == 'mf_model':
        recommended_items = mf_model.predict([np.array([user_id]), items_tfidf])
    elif model_version == 'mixed_model':
        recommended_items = mixed_model.predict([np.array([user_id]), items_tfidf])
    
    top_items = np.argsort(recommended_items)[::-1][:10]
    top_items = items_data.loc[top_items]['item_id'].tolist()
    logging.info(f'Returning recommendations: {top_items}')
    return jsonify({'recommended_items': top_items, 'model_version': model_version})

if __name__ == '__main__':
    app.run(debug=True)

31. 前端的性能监控

使用 Google Lighthouse

  1. 安装 Chrome 浏览器:确保您的开发环境中安装了最新版本的 Chrome 浏览器。
  2. 运行 Lighthouse
    • 打开 Chrome 浏览器。
    • 导航至您的前端应用 URL。
    • 打开开发者工具 (Ctrl+Shift+I 或右键选择 “检查”)。
    • 选择 “Lighthouse” 标签页。
    • 点击 “Generate report” 按钮开始性能测试。

32. 服务的API文档生成

使用 Swagger

  1. 安装 Swagger UI

pip install Flask-Swagger
pip install Flask-Swagger-UI

     2.配置 Swagger

from flask_swagger import swagger
from flask_swagger_ui import get_swaggerui_blueprint

SWAGGER_URL = '/api/docs'
API_URL = '/static/swagger.json'

# Swagger UI blueprint
swaggerui_blueprint = get_swaggerui_blueprint(
    SWAGGER_URL,
    API_URL,
    config={
        'app_name': "Recommendation System"
    }
)

# Add Swagger UI blueprint to your Flask app
app.register_blueprint(swaggerui_blueprint, url_prefix=SWAGGER_URL)

# Generate Swagger JSON
@app.route("/static/swagger.json")
def create_swagger_spec():
    swag = swagger(app)
    swag['info']['version'] = "1.0"
    swag['info']['title'] = "Recommendation System API"
    return jsonify(swag)

33. 前端的用户行为分析

使用 Google Analytics

  1. 获取 Google Analytics 跟踪ID

    • 登录 Google Analytics 控制台。
    • 创建一个新的属性并获取跟踪ID。
  2. 安装 Google Analytics SDK

npm install ga-react-tracker

     3.配置 Google Analytics

// App.js
import React, { useState, useEffect } from 'react';
import { Tracker } from 'ga-react-tracker';
import axios from 'axios';
import i18n from 'i18next';
import { useTranslation, initReactI18next } from 'react-i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import './App.css';  // 导入样式文件

const tracker = new Tracker({
    trackingId: 'YOUR_TRACKING_ID',
    debug: process.env.NODE_ENV === 'development',
});

function App() {
    const { t } = useTranslation();
    const [userId, setUserId] = useState(1);
    const [recommendedItems, setRecommendedItems] = useState([]);
    const [feedback, setFeedback] = useState({});
    const [loading, setLoading] = useState(false);
    const [error, setError] = useState(null);

    useEffect(() => {
        tracker.pageview('/');
        fetchRecommendations();
    }, []);

    const fetchRecommendations = useCallback(async () => {
        try {
            setLoading(true);
            const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
            setRecommendedItems(response.data.recommended_items);
            tracker.event('recommendation', 'fetch', `User ${userId}`);
        } catch (error) {
            setError(error);
        } finally {
            setLoading(false);
        }
    }, [userId]);

    const handleFeedback = async (itemId, feedbackType) => {
        try {
            const response = await axios.post(`http://localhost:5000/feedback`, { itemId, feedbackType });
            console.log('Feedback sent:', response.data);
            setFeedback(prevFeedback => ({ ...prevFeedback, [itemId]: feedbackType }));
            tracker.event('feedback', feedbackType, `Item ${itemId}`);
        } catch (error) {
            setError(error);
        }
    };

    return (
        <div className="app-container">
            <h1 className="title">{t('title')}</h1>
            <input
                type="number"
                value={userId}
                onChange={(e) => setUserId(e.target.value)}
                placeholder="Enter User ID"
                className="user-input"
            />
            {loading && <p>Loading...</p>}
            {error && <p>Error: {error.message}</p>}
            <ul className="recommendations-list">
                {recommendedItems.map((itemId, index) => (
                    <li key={index} className="recommendation-item">
                        <span className="item-id">{itemId}</span>
                        <button onClick={() => handleFeedback(itemId, 'like')} className="like-button">
                            {t('like')}
                        </button>
                        <button onClick={() => handleFeedback(itemId, 'dislike')} className="dislike-button">
                            {t('dislike')}
                        </button>
                        {feedback[itemId] === 'like' && <span className="feedback-text">Liked</span>}
                        {feedback[itemId] === 'dislike' && <span className="feedback-text">Disliked</span>}
                    </li>
                ))}
            </ul>
        </div>
    );
}

export default App;

至此,我们已经进一步完善了商品推荐系统项目,包括实现了模型的在线A/B测试、前端的性能监控、服务的API文档生成以及前端的用户行为分析。为了继续完善这个项目,我们可以专注于以下几个方面:

  1. 模型性能改进:考虑使用更复杂的模型或者特征工程来提高推荐的准确性。
  2. 用户界面优化:改善用户界面的设计和交互体验。
  3. 数据处理与清洗:确保数据的质量,处理缺失值和异常值。
  4. 持续集成与部署:设置CI/CD流程以自动化构建、测试和部署过程。

34. 模型性能改进

# 使用深度学习模型提升推荐质量
from keras.layers import Input, Embedding, Flatten, Dot, Dense, Concatenate
from keras.models import Model

# 定义输入层
user_input = Input(shape=[1], name='UserInput')
item_input = Input(shape=[1], name='ItemInput')

# 定义嵌入层
num_users = users.shape[0]
num_items = items.shape[0]

embedding_size = 50
user_embedding = Embedding(output_dim=embedding_size, input_dim=num_users + 1, input_length=1, name='UserEmbedding')(user_input)
item_embedding = Embedding(output_dim=embedding_size, input_dim=num_items + 1, input_length=1, name='ItemEmbedding')(item_input)

# 展平嵌入向量
user_vecs = Flatten(name='FlattenUsers')(user_embedding)
item_vecs = Flatten(name='FlattenItems')(item_embedding)

# 计算点积
product = Dot(name='DotProduct', normalize=False, axes=1)([user_vecs, item_vecs])

# 定义模型
model = Model([user_input, item_input], product)

# 编译模型
model.compile('adam', 'mean_squared_error')

# 训练模型
history = model.fit([users_train, items_train], ratings_train, epochs=50, verbose=1, validation_split=0.1)

# 评估模型
model.evaluate([users_test, items_test], ratings_test, verbose=0)

35. 用户界面优化

// 使用React Hooks优化前端UI
import React, { useState, useEffect } from 'react';
import axios from 'axios';

function App() {
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);
  const [loading, setLoading] = useState(false);
  const [error, setError] = useState(null);

  useEffect(() => {
    fetchRecommendations();
  }, []);

  const fetchRecommendations = useCallback(async () => {
    try {
      setLoading(true);
      const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
      setRecommendedItems(response.data.recommended_items);
    } catch (error) {
      setError(error);
    } finally {
      setLoading(false);
    }
  }, [userId]);

  const handleUserIdChange = (event) => {
    setUserId(event.target.value);
  };

  const handleRefreshClick = () => {
    fetchRecommendations();
  };

  return (
    <div className="app-container">
      <h1>商品推荐系统</h1>
      <label htmlFor="userId">用户ID:</label>
      <input
        type="number"
        id="userId"
        value={userId}
        onChange={handleUserIdChange}
        placeholder="Enter User ID"
        className="user-input"
      />
      <button onClick={handleRefreshClick}>刷新推荐</button>
      {loading && <p>Loading...</p>}
      {error && <p>Error: {error.message}</p>}
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            商品 {itemId}
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

36. 数据处理与清洗

# 使用pandas进行数据预处理
import pandas as pd
import numpy as np

# 加载数据
ratings = pd.read_csv('ratings.csv')
items = pd.read_csv('items.csv')

# 处理缺失值
ratings.fillna(0, inplace=True)

# 处理异常值
ratings = ratings[ratings['rating'] > 0]

# 数据转换
ratings_matrix = ratings.pivot_table(index='user_id', columns='item_id', values='rating').fillna(0)

37. 持续集成与部署

# .github/workflows/ci.yml
name: CI

on:
  push:
    branches:
      - main
  pull_request:
    branches:
      - main

jobs:
  build:
    runs-on: ubuntu-latest

    steps:
    - uses: actions/checkout@v2
    - name: Set up Python 3.8
      uses: actions/setup-python@v2
      with:
        python-version: 3.8
    - name: Install dependencies
      run: |
        python -m pip install --upgrade pip
        pip install -r requirements.txt
    - name: Test with pytest
      run: |
        pip install pytest
        pytest tests/

  deploy:
    needs: build
    runs-on: ubuntu-latest
    if: github.ref == 'refs/heads/main'

    steps:
    - uses: actions/checkout@v2
    - name: Deploy to Heroku
      uses: akhileshns/heroku-deploy@v3.12.12
      with:
        heroku_api_key: ${{secrets.HEROKU_API_KEY}}
        heroku_app_name: "your-app-name"
        heroku_email: "you@example.com"

我们已经完成了对商品推荐系统的进一步完善,包括使用深度学习模型改进推荐算法、优化用户界面、数据处理与清洗以及实现持续集成与部署。接下来我们将继续完善这个项目,包括:

  1. 模型的超参数优化:使用网格搜索或随机搜索等方法寻找最佳超参数组合。
  2. 前端的响应式设计:使前端应用能够适应不同屏幕尺寸的设备。
  3. 服务的安全加固:增加安全措施以保护API和服务免受攻击。
  4. 前端的单元测试和集成测试:编写测试用例以确保前端组件的功能正确性。

38. 模型的超参数优化

# 使用GridSearchCV进行超参数优化
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasRegressor

# 定义模型构建函数
def build_model(embedding_size=50):
    user_input = Input(shape=[1], name='UserInput')
    item_input = Input(shape=[1], name='ItemInput')
    
    user_embedding = Embedding(output_dim=embedding_size, input_dim=num_users + 1, input_length=1, name='UserEmbedding')(user_input)
    item_embedding = Embedding(output_dim=embedding_size, input_dim=num_items + 1, input_length=1, name='ItemEmbedding')(item_input)
    
    user_vecs = Flatten(name='FlattenUsers')(user_embedding)
    item_vecs = Flatten(name='FlattenItems')(item_embedding)
    
    product = Dot(name='DotProduct', normalize=False, axes=1)([user_vecs, item_vecs])
    
    model = Model([user_input, item_input], product)
    model.compile('adam', 'mean_squared_error')
    return model

# 包装Keras模型
keras_regressor = KerasRegressor(build_fn=build_model, epochs=50, batch_size=128, verbose=0)

# 定义超参数搜索空间
param_grid = {
    'embedding_size': [20, 50, 100],
    'epochs': [20, 50, 100],
    'batch_size': [64, 128, 256]
}

# 创建GridSearchCV对象
grid_search = GridSearchCV(estimator=keras_regressor, param_grid=param_grid, cv=3)

# 进行网格搜索
grid_result = grid_search.fit([users_train, items_train], ratings_train)

# 输出最佳参数组合
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

39. 前端的响应式设计

// 使用CSS媒体查询实现响应式布局
/* styles.css */
.app-container {
  display: flex;
  flex-direction: column;
  align-items: center;
  padding: 20px;
}

.title {
  font-size: 24px;
  margin-bottom: 10px;
}

.user-input {
  width: 100%;
  max-width: 300px;
  padding: 10px;
  margin-bottom: 10px;
  font-size: 16px;
}

.recommendations-list {
  list-style-type: none;
  padding: 0;
  width: 100%;
  max-width: 400px;
}

.recommendation-item {
  border-bottom: 1px solid #ccc;
  padding: 10px 0;
}

.item-id {
  font-weight: bold;
  display: inline-block;
  min-width: 50px;
}

.like-button, .dislike-button {
  margin-left: 10px;
  cursor: pointer;
}

@media (max-width: 600px) {
  .app-container {
    padding: 10px;
  }

  .title {
    font-size: 20px;
  }

  .user-input {
    max-width: 200px;
    font-size: 14px;
  }

  .recommendations-list {
    max-width: 300px;
  }
}

40. 服务的安全加固

# 在Flask应用中增加安全措施
from flask import Flask, request, jsonify
from werkzeug.security import generate_password_hash, check_password_hash
import jwt
import datetime

app = Flask(__name__)
app.config['SECRET_KEY'] = 'your-secret-key'

# 用户认证
@app.route('/login', methods=['POST'])
def login():
    auth = request.authorization
    
    if not auth or not auth.username or not auth.password:
        return make_response('Could not verify', 401, {'WWW-Authenticate': 'Basic realm="Login required!"'})
    
    if auth.username != 'admin' or not check_password_hash(generate_password_hash('secret'), auth.password):
        return make_response('Could not verify', 401, {'WWW-Authenticate': 'Basic realm="Login required!"'})
    
    token = jwt.encode({'user': auth.username, 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=30)}, app.config['SECRET_KEY'])
    
    return jsonify({'token': token.decode('UTF-8')})

# 保护路由
@app.route('/protected')
def protected():
    token = request.headers.get('Authorization')
    if not token:
        return jsonify({'message': 'Token is missing!'}), 401
    
    try:
        data = jwt.decode(token, app.config['SECRET_KEY'], algorithms=["HS256"])
        return jsonify({'message': 'Protected route accessed!'})
    except:
        return jsonify({'message': 'Token is invalid!'}), 401

if __name__ == '__main__':
    app.run(debug=True)

41. 前端的单元测试和集成测试

// 使用Jest和Enzyme进行前端测试
// tests/App.test.js
import React from 'react';
import { shallow } from 'enzyme';
import App from '../App';

describe('App component', () => {
  let wrapper;

  beforeEach(() => {
    wrapper = shallow(<App />);
  });

  it('renders without crashing', () => {
    expect(wrapper).toBeTruthy();
  });

  it('displays the correct title', () => {
    expect(wrapper.find('.title').text()).toEqual('商品推荐系统');
  });

  it('handles user ID change correctly', () => {
    const newUserId = 2;
    wrapper.find('.user-input').simulate('change', { target: { value: newUserId } });
    expect(wrapper.state('userId')).toEqual(newUserId);
  });

  it('calls fetchRecommendations on refresh button click', () => {
    const mockFetchRecommendations = jest.fn();
    wrapper = shallow(<App fetchRecommendations={mockFetchRecommendations} />);
    wrapper.find('.refresh-button').simulate('click');
    expect(mockFetchRecommendations).toHaveBeenCalled();
  });
});

至此,我们已经进一步完善了商品推荐系统项目,包括实现了模型的超参数优化、前端的响应式设计、服务的安全加固以及前端的单元测试和集成测试。接下来我们将继续完善这个项目,包括:

  1. 模型的实时训练:实现模型在接收到新的用户反馈时能够实时更新。
  2. 前端的国际化:支持多语言,以适应不同的用户群体。
  3. 服务的日志审计:记录重要的操作和事件以供后期分析。
  4. 前端的性能优化:减少加载时间和提高用户体验。

42. 模型的实时训练

# 在后端服务中添加实时训练逻辑
from flask import Flask, request, jsonify
import numpy as np
from keras.models import load_model

app = Flask(__name__)

# 加载模型
mf_model = load_model('mf_model.h5')

# 实时训练逻辑
def update_model(user_id, item_id, rating):
    # 更新数据集
    global mf_model
    global users
    global items
    global ratings

    users = np.append(users, user_id)
    items = np.append(items, item_id)
    ratings = np.append(ratings, rating)

    # 重新训练模型
    mf_model.fit(
        [users, items], ratings,
        epochs=10, batch_size=64,
        verbose=0
    )

@app.route('/feedback', methods=['POST'])
def feedback():
    data = request.get_json()
    user_id = data.get('user_id')
    item_id = data.get('item_id')
    feedback_type = data.get('feedback_type')

    # 将反馈类型转换为评分
    rating = 5 if feedback_type == 'like' else 1

    # 更新模型
    update_model(user_id, item_id, rating)

    return jsonify({'status': 'success'})

if __name__ == '__main__':
    app.run(debug=True)

43. 前端的国际化

// 使用i18next和react-i18next实现国际化
// App.js
import React, { useState, useEffect } from 'react';
import axios from 'axios';
import i18n from 'i18next';
import { useTranslation, initReactI18next } from 'react-i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import './App.css';  // 导入样式文件

// 初始化 i18n
i18n
  .use(initReactI18next) // passes i18n down to react-i18next
  .use(LanguageDetector) // detect user language
  .init({
    resources: {
      en: { translation: { title: 'Product Recommendations', like: 'Like', dislike: 'Dislike' } },
      es: { translation: { title: 'Recomendaciones de Productos', like: 'Me Gusta', dislike: 'No Me Gusta' } }
    },
    fallbackLng: 'en',
    interpolation: {
      escapeValue: false // react already safes from xss
    }
  });

function App() {
  const { t } = useTranslation();
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);
  const [feedback, setFeedback] = useState({});
  const [loading, setLoading] = useState(false);
  const [error, setError] = useState(null);

  const fetchRecommendations = useCallback(async () => {
    try {
      setLoading(true);
      const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
      setRecommendedItems(response.data.recommended_items);
    } catch (error) {
      setError(error);
    } finally {
      setLoading(false);
    }
  }, [userId]);

  useEffect(() => {
    fetchRecommendations();
  }, [fetchRecommendations]);

  const handleFeedback = async (itemId, feedbackType) => {
    try {
      const response = await axios.post(`http://localhost:5000/feedback`, { itemId, feedbackType });
      console.log('Feedback sent:', response.data);
      setFeedback(prevFeedback => ({ ...prevFeedback, [itemId]: feedbackType }));
    } catch (error) {
      setError(error);
    }
  };

  return (
    <div className="app-container">
      <h1 className="title">{t('title')}</h1>
      <input
        type="number"
        value={userId}
        onChange={(e) => setUserId(e.target.value)}
        placeholder={t('enter_user_id')}
        className="user-input"
      />
      {loading && <p>{t('loading')}</p>}
      {error && <p>Error: {error.message}</p>}
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            <span className="item-id">{itemId}</span>
            <button onClick={() => handleFeedback(itemId, 'like')} className="like-button">
              {t('like')}
            </button>
            <button onClick={() => handleFeedback(itemId, 'dislike')} className="dislike-button">
              {t('dislike')}
            </button>
            {feedback[itemId] === 'like' && <span className="feedback-text">{t('liked')}</span>}
            {feedback[itemId] === 'dislike' && <span className="feedback-text">{t('disliked')}</span>}
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

44. 服务的日志审计

# 使用logging模块记录日志
import logging

# 配置日志
logging.basicConfig(filename='app.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s')

# 在后端服务中添加日志记录
from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route('/recommend/<int:user_id>', methods=['GET'])
def recommend(user_id):
    logging.info(f'Received request for user ID: {user_id}')
    
    # 推荐逻辑
    recommended_items = ['item1', 'item2', 'item3']
    
    logging.info(f'Returning recommendations: {recommended_items}')
    return jsonify({'recommended_items': recommended_items})

@app.route('/feedback', methods=['POST'])
def feedback():
    data = request.get_json()
    user_id = data.get('user_id')
    item_id = data.get('item_id')
    feedback_type = data.get('feedback_type')
    
    logging.info(f'Received feedback: user_id={user_id}, item_id={item_id}, feedback_type={feedback_type}')
    
    # 反馈处理逻辑
    return jsonify({'status': 'success'})

if __name__ == '__main__':
    app.run(debug=True)

45. 前端的性能优化

// 使用React.memo优化组件渲染
// App.js
import React, { useState, useEffect, useMemo } from 'react';
import axios from 'axios';
import i18n from 'i18next';
import { useTranslation, initReactI18next } from 'react-i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import './App.css';  // 导入样式文件

// 初始化 i18n
i18n
  .use(initReactI18next) // passes i18n down to react-i18next
  .use(LanguageDetector) // detect user language
  .init({
    resources: {
      en: { translation: { title: 'Product Recommendations', like: 'Like', dislike: 'Dislike' } },
      es: { translation: { title: 'Recomendaciones de Productos', like: 'Me Gusta', dislike: 'No Me Gusta' } }
    },
    fallbackLng: 'en',
    interpolation: {
      escapeValue: false // react already safes from xss
    }
  });

const RecommendationList = React.memo(({ recommendedItems, feedback, onFeedback }) => {
  return (
    <ul className="recommendations-list">
      {recommendedItems.map((itemId, index) => (
        <li key={index} className="recommendation-item">
          <span className="item-id">{itemId}</span>
          <button onClick={() => onFeedback(itemId, 'like')} className="like-button">
            {t('like')}
          </button>
          <button onClick={() => onFeedback(itemId, 'dislike')} className="dislike-button">
            {t('dislike')}
          </button>
          {feedback[itemId] === 'like' && <span className="feedback-text">{t('liked')}</span>}
          {feedback[itemId] === 'dislike' && <span className="feedback-text">{t('disliked')}</span>}
        </li>
      ))}
    </ul>
  );
});

function App() {
  const { t } = useTranslation();
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);
  const [feedback, setFeedback] = useState({});
  const [loading, setLoading] = useState(false);
  const [error, setError] = useState(null);

  const fetchRecommendations = useCallback(async () => {
    try {
      setLoading(true);
      const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
      setRecommendedItems(response.data.recommended_items);
    } catch (error) {
      setError(error);
    } finally {
      setLoading(false);
    }
  }, [userId]);

  useEffect(() => {
    fetchRecommendations();
  }, [fetchRecommendations]);

  const handleFeedback = async (itemId, feedbackType) => {
    try {
      const response = await axios.post(`http://localhost:5000/feedback`, { itemId, feedbackType });
      console.log('Feedback sent:', response.data);
      setFeedback(prevFeedback => ({ ...prevFeedback, [itemId]: feedbackType }));
    } catch (error) {
      setError(error);
    }
  };

  return (
    <div className="app-container">
      <h1 className="title">{t('title')}</h1>
      <input
        type="number"
        value={userId}
        onChange={(e) => setUserId(e.target.value)}
        placeholder={t('enter_user_id')}
        className="user-input"
      />
      {loading && <p>{t('loading')}</p>}
      {error && <p>Error: {error.message}</p>}
      <RecommendationList
        recommendedItems={recommendedItems}
        feedback={feedback}
        onFeedback={handleFeedback}
      />
    </div>
  );
}

export default App;

至此,我们已经进一步完善了商品推荐系统项目,包括实现了模型的实时训练、前端的国际化、服务的日志审计以及前端的性能优化。这些改进有助于提高系统的整体性能和用户体验。接下来我们将继续完善这个项目,包括:

  1. 模型的实时预测:优化模型预测逻辑,使其能够在接收到新请求时快速做出预测。
  2. 前端的错误处理:增强前端应用的错误处理能力,提供更好的用户体验。
  3. 服务的负载均衡:使用Nginx作为反向代理服务器,实现服务的负载均衡。
  4. 前端的状态管理:使用Redux来管理前端应用的状态。

46. 模型的实时预测

# 在后端服务中优化实时预测逻辑
from flask import Flask, request, jsonify
import numpy as np
from keras.models import load_model

app = Flask(__name__)

# 加载模型
mf_model = load_model('mf_model.h5')

@app.route('/recommend/<int:user_id>', methods=['GET'])
def recommend(user_id):
    # 获取所有物品
    all_items = np.arange(1, num_items + 1)
    
    # 预测用户对所有物品的评分
    predicted_ratings = mf_model.predict([np.full(len(all_items), user_id), all_items])
    
    # 获取评分最高的前10个物品
    top_items = np.argsort(predicted_ratings)[::-1][:10]
    top_items = all_items[top_items].tolist()
    
    return jsonify({'recommended_items': top_items})

if __name__ == '__main__':
    app.run(debug=True)

47. 前端的错误处理

// 在前端应用中增强错误处理
// App.js
import React, { useState, useEffect } from 'react';
import axios from 'axios';
import './App.css';  // 导入样式文件

function App() {
  const [userId, setUserId] = useState(1);
  const [recommendedItems, setRecommendedItems] = useState([]);
  const [loading, setLoading] = useState(false);
  const [error, setError] = useState(null);

  const fetchRecommendations = useCallback(async () => {
    try {
      setLoading(true);
      const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
      setRecommendedItems(response.data.recommended_items);
    } catch (error) {
      setError(error.message);
    } finally {
      setLoading(false);
    }
  }, [userId]);

  useEffect(() => {
    fetchRecommendations();
  }, [fetchRecommendations]);

  const handleUserIdChange = (event) => {
    setUserId(event.target.value);
  };

  const handleRefreshClick = () => {
    fetchRecommendations();
  };

  return (
    <div className="app-container">
      <h1>商品推荐系统</h1>
      <label htmlFor="userId">用户ID:</label>
      <input
        type="number"
        id="userId"
        value={userId}
        onChange={handleUserIdChange}
        placeholder="Enter User ID"
        className="user-input"
      />
      <button onClick={handleRefreshClick}>刷新推荐</button>
      {loading && <p>Loading...</p>}
      {error && <p>Error: {error}</p>}
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            商品 {itemId}
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;

48. 服务的负载均衡

# Nginx配置文件
server {
    listen 80;

    server_name example.com;

    location / {
        proxy_pass http://backend;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_set_header X-Forwarded-Proto $scheme;
    }
}

upstream backend {
    server backend1:5000;
    server backend2:5000;
}

49. 前端的状态管理

// 使用Redux管理状态
// store.js
import { createStore } from 'redux';

const initialState = {
  userId: 1,
  recommendedItems: [],
  loading: false,
  error: null
};

function reducer(state = initialState, action) {
  switch (action.type) {
    case 'SET_USER_ID':
      return { ...state, userId: action.userId };
    case 'FETCH_RECOMMENDATIONS_REQUEST':
      return { ...state, loading: true, error: null };
    case 'FETCH_RECOMMENDATIONS_SUCCESS':
      return { ...state, recommendedItems: action.recommendedItems, loading: false };
    case 'FETCH_RECOMMENDATIONS_FAILURE':
      return { ...state, error: action.error, loading: false };
    default:
      return state;
  }
}

const store = createStore(reducer);

export default store;
// App.js
import React, { useEffect } from 'react';
import axios from 'axios';
import { useSelector, useDispatch } from 'react-redux';
import { fetchRecommendations } from './actions';
import './App.css';  // 导入样式文件

function App() {
  const userId = useSelector(state => state.userId);
  const recommendedItems = useSelector(state => state.recommendedItems);
  const loading = useSelector(state => state.loading);
  const error = useSelector(state => state.error);
  const dispatch = useDispatch();

  useEffect(() => {
    dispatch(fetchRecommendations(userId));
  }, [dispatch, userId]);

  const handleUserIdChange = (event) => {
    dispatch({ type: 'SET_USER_ID', userId: event.target.value });
  };

  const handleRefreshClick = () => {
    dispatch(fetchRecommendations(userId));
  };

  return (
    <div className="app-container">
      <h1>商品推荐系统</h1>
      <label htmlFor="userId">用户ID:</label>
      <input
        type="number"
        id="userId"
        value={userId}
        onChange={handleUserIdChange}
        placeholder="Enter User ID"
        className="user-input"
      />
      <button onClick={handleRefreshClick}>刷新推荐</button>
      {loading && <p>Loading...</p>}
      {error && <p>Error: {error}</p>}
      <ul className="recommendations-list">
        {recommendedItems.map((itemId, index) => (
          <li key={index} className="recommendation-item">
            商品 {itemId}
          </li>
        ))}
      </ul>
    </div>
  );
}

export default App;
// actions.js
import axios from 'axios';

export const fetchRecommendations = (userId) => async (dispatch) => {
  dispatch({ type: 'FETCH_RECOMMENDATIONS_REQUEST' });
  
  try {
    const response = await axios.get(`http://localhost:5000/recommend/${userId}`);
    dispatch({ type: 'FETCH_RECOMMENDATIONS_SUCCESS', recommendedItems: response.data.recommended_items });
  } catch (error) {
    dispatch({ type: 'FETCH_RECOMMENDATIONS_FAILURE', error: error.message });
  }
};

至此,我们已经进一步完善了商品推荐系统项目,包括实现了模型的实时预测、增强了前端的错误处理、配置了服务的负载均衡以及引入了前端的状态管理。接下来我们将继续完善这个项目,包括:

  1. 模型的性能监控:使用Prometheus和Grafana监控模型的性能指标。
  2. 前端的性能监控:使用Google Lighthouse或类似的工具来监控前端性能。
  3. 服务的容器化:使用Docker将后端服务容器化以便于部署和扩展。
  4. 前端的热更新:使用Webpack Dev Server实现实时热更新。

50. 模型的性能监控

# 在后端服务中添加Prometheus监控
from flask import Flask, request, jsonify
from prometheus_client import start_http_server, Counter, Histogram
import numpy as np
from keras.models import load_model

app = Flask(__name__)

# 加载模型
mf_model = load_model('mf_model.h5')

# Prometheus监控指标
REQUESTS = Counter('requests_total', 'Total number of requests.')
ERRORS = Counter('errors_total', 'Total number of errors.')
PREDICTION_TIME = Histogram('prediction_time_seconds', 'Time spent predicting recommendations.')

@app.route('/recommend/<int:user_id>', methods=['GET'])
@PREDICTION_TIME.time()
def recommend(user_id):
    REQUESTS.inc()
    # 获取所有物品
    all_items = np.arange(1, num_items + 1)
    
    # 预测用户对所有物品的评分
    predicted_ratings = mf_model.predict([np.full(len(all_items), user_id), all_items])
    
    # 获取评分最高的前10个物品
    top_items = np.argsort(predicted_ratings)[::-1][:10]
    top_items = all_items[top_items].tolist()
    
    return jsonify({'recommended_items': top_items})

if __name__ == '__main__':
    # 启动Prometheus客户端
    start_http_server(8000)
    app.run(debug=True)

51. 前端的性能监控

// 使用Lighthouse生成性能报告
// 在命令行运行 `lighthouse http://localhost:3000 --quiet --output=json > report.json`

52. 服务的容器化

# Dockerfile
FROM python:3.8-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

EXPOSE 5000

CMD ["python", "app.py"]
# 构建Docker镜像
docker build -t recommendation-service .

# 运行Docker容器
docker run -d -p 5000:5000 --name recommendation-service recommendation-service

53. 前端的热更新

// 使用Webpack Dev Server实现实时热更新
// webpack.config.js
const path = require('path');
const HtmlWebpackPlugin = require('html-webpack-plugin');

module.exports = {
  entry: './src/index.js',
  output: {
    path: path.resolve(__dirname, 'dist'),
    filename: 'bundle.js',
  },
  devServer: {
    contentBase: path.join(__dirname, 'dist'),
    compress: true,
    port: 3000,
    hot: true,
    historyApiFallback: true,
  },
  plugins: [
    new HtmlWebpackPlugin({
      template: './public/index.html',
    }),
  ],
  module: {
    rules: [
      {
        test: /\.js$/,
        exclude: /node_modules/,
        use: {
          loader: 'babel-loader',
        },
      },
      {
        test: /\.css$/,
        use: ['style-loader', 'css-loader'],
      },
    ],
  },
};

54. 总结

至此,我们已经完善了商品推荐系统项目,包括实现了模型的性能监控、前端性能监控、服务的容器化以及前端的热更新。这些改进有助于提高系统的整体性能和用户体验。如果您需要更具体的帮助或有其他特殊需求,请随时告诉我。

如果文章内容对您有所触动,别忘了点赞、关注,收藏!

推荐阅读:

1.【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星

2.【人工智能】利用TensorFlow.js在浏览器中实现一个基本的情感分析系统

3.【人工智能】TensorFlow lite介绍、应用场景以及项目实践:使用TensorFlow Lite进行数字分类

4.【人工智能】使用NLP进行语音到文本的转换和主题的提取项目实践及案例分析一

5.【人工智能】使用NLP进行语音到文本的转换和主题的提取项目实践及案例分析二

 

 

  • 20
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@我们的天空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值