一、课程要求以及说明
1、使用分类、聚类、关系提取对数据集进行相关的分析,在使用数据集之前,需要用到数据预处理
2、可以在以下方法中选择一种聚类和一种分类技术:
聚类(无监督学习):
C1 network analysis 网络分析
C2 k-means k-均值
C3 co-clustering 共聚类
C4 community detection 社区检测
C5 topic modelling 主题建模
C6 co-word analysis 共词分析
分类(监督学习):
S1 Naive Bayes 朴素贝叶斯
S2 SVM Support Vector Machines 支持向量机
S3 LSTM long short-term memory network 长短期记忆网络
S4 BERT Transformers BERT转换器
S5 CNN Convolutional Neural Networks 卷积神经网络
S6 Random Forest 随机森林
3、先验表
请提供一个关于你所知道的关于数据集的所有信息的表格,称为“先验表”。例如,报告你的数据集中的文档数量、特征 1 的数量、特征2 的数量。特征可以是单词或标签集。
二、作业说明
作业包括
- 数据集(数据集下载自kaggle,链接在大作业文档中)
- 以往大作业项目文档参考
- 本次大作业文档
- 答辩ppt
- 相关代码以及运行结果
- 使用语言:python;使用工具:pycharm
给出大作业的网盘链接:
链接:https://pan.baidu.com/s/1xTc7I0F1hoWC-ZH-YUnv9w
提取码:mpp1