CVPR2019原论文:Progressive Image Deraining Networks: A Better and Simpler Baseline
开源代码(pytorch框架):https://github.com/csdwren/PReNet
1.主要工作:
提出了逐步优化残差网络 progressive ResNet (PRN)和逐步优化循环网络progressive recurrent network (PReNet)完成图像去雨。这两个网络没有太大差异,只是PReNet比PRN多了一个循环单元。PRN和PReNet具有简单的结构,但能够实现较好的去雨效果。它们能够被轻易嵌入其它的去雨网络框架中。
PRN和PReNet能够内部循环计算,不增加网络参数的同时,还能实现较好的去雨效果。
PRN和PReNet能够通过 single negative SSIM 或 MSE损失来更新网络参数。
2.progressive residual network (PRN):
PRN的结构非常简单,主要分为三个部分:1)一个卷积层 fi(…)接收input图像 ;2)若干个残差块(ResBlocks)的组合fres(…)提取深度特征信息 ;3)一个卷积层fout(…)输出去雨结果图像。
但PRN是循环迭代优化的,比如上图分为了T个循环优化阶段,从t=1→t=2→t=3→…→t=T。这些循环的网络参数是共用的