深度学习——Pre-Net

本文介绍了CVPR2019提出的PReNet和PReNet,用于图像去雨任务。这两种网络结构简单,通过内部循环优化实现良好的去雨效果,不增加额外参数。PReNet包含卷积层和残差块,而PReNet额外加入循环单元LSTM。实验表明,使用SSIM损失函数的PReNet在视觉效果和评价指标上优于MSE损失函数,且循环优化阶段不宜过多,T=6时效果最佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR2019原论文:Progressive Image Deraining Networks: A Better and Simpler Baseline
开源代码(pytorch框架):https://github.com/csdwren/PReNet
1.主要工作:
提出了逐步优化残差网络 progressive ResNet (PRN)和逐步优化循环网络progressive recurrent network (PReNet)完成图像去雨。这两个网络没有太大差异,只是PReNet比PRN多了一个循环单元。PRN和PReNet具有简单的结构,但能够实现较好的去雨效果。它们能够被轻易嵌入其它的去雨网络框架中。
PRN和PReNet能够内部循环计算,不增加网络参数的同时,还能实现较好的去雨效果。
PRN和PReNet能够通过 single negative SSIM 或 MSE损失来更新网络参数。

2.progressive residual network (PRN):
在这里插入图片描述
PRN的结构非常简单,主要分为三个部分:1)一个卷积层 fi(…)接收input图像 ;2)若干个残差块(ResBlocks)的组合fres(…)提取深度特征信息 ;3)一个卷积层fout(…)输出去雨结果图像。
但PRN是循环迭代优化的,比如上图分为了T个循环优化阶段,从t=1→t=2→t=3→…→t=T。这些循环的网络参数是共用的࿰

### PReNet 图像去雨技术实现方法 PReNet 是一种用于图像去雨的深度学习模型,其核心思想在于通过逐步优化的方式处理图像中的雨水痕迹。该网络由两个主要部分组成:progressive ResNet (PRN) 和 progressive Recurrent Network (PReNet)[^4]。 #### 模型架构概述 PReNet 的设计旨在简化传统复杂网络结构的同时保持高性能。具体来说,它引入了逐步优化的概念,允许网络在多次迭代中逐渐减少雨水残留的影响。相比其他复杂的多分支或多模块设计,PReNet 更加紧凑且易于实现。 以下是 PReNet 的一些关键技术特点: 1. **逐步优化机制** PReNet 利用了循环单元的思想,在每次迭代中不断细化输入图像的质量。这种机制使得即使在网络规模较小的情况下也能达到较高的性能水平。 2. **简单而有效的损失函数** 使用单一负 SSIM 或 MSE 损失即可有效训练整个网络,无需额外设计复杂的复合损失项。 3. **可扩展性强** 由于其模块化的设计理念,PReNet 可轻松集成至更大的端到端系统或其他特定应用场景下的定制需求之中。 #### 论文与代码资源链接 如果希望深入了解 PReNet 背后的理论基础以及其实验设置,则可以查阅原始发表于 CVPR 2019 的学术文章《Progressive Image Deraining Networks: A Better and Simpler Baseline》[@inproceedings{ren2019progressive}] [^2] 。与此同时,官方也开放了基于 PyTorch 框架构建的完整实现版本供开发者下载并实验 https://github.com/csdwren/PReNet 。 此存储库包含了详细的文档说明、预训练权重文件以及运行脚本等内容,方便用户快速上手实践。 ```python import torch from prenet_model import PReNet # 初始化模型实例 model = PReNet(recursive_times=6) # 加载已有的参数(如果有) checkpoint_path = 'path_to_checkpoint.pth' if checkpoint_path is not None: model.load_state_dict(torch.load(checkpoint_path)) # 前向传播过程演示 input_image = ... # 输入含噪图片 Tensor 形状为[B,C,H,W] output_cleaned = model(input_image) ``` 上述片段展示了一个典型调用流程示例,其中 `prenet_model.py` 应当定义好对应类及其成员属性初始化逻辑等必要组成部分。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值