AIGC实战——VQ-GAN(Vector Quantized Generative Adversarial Network)

本文介绍了VQ-GAN,一种结合了变分自编码器、Transformer和生成对抗网络思想的图像生成模型。VQ-GAN通过离散潜空间避免了传统连续潜空间的问题,利用对齐损失和承诺损失提高图像质量。ViT VQ-GAN进一步将卷积结构替换为Transformer,提高了模型的表现。文章总结了VQ-GAN的关键特性并展示了其实战应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

本节中,我们将介绍 VQ-GAN (Vector Quantized Generative Adversarial Network) 和 ViT VQ-GAN,它们融合了变分自编码器 (Variational Autoencoder, VAE)Transformer生成对抗网络 (Generative Adversarial Network, GAN) 的思想,VQ-GANMuse (Google 提出的文本生成图像生成模型)的关键组成部分。

1. VQ-GAN

VQ-GAN (Vector Quantized GAN) 是于 2020 年提出的生成对抗网络 (G

评论 104
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值