CVPR2020原论文:Single Image Reflection Removal through Cascaded Refinement
开源代码(pytorch框架):https://github.com/JHL-HUST/IBCLN
1.主要工作:
提出了层级优化网络结构(Iterative Boost Convolutional LSTM Network ,IBCLN) 完成真实世界单幅图像去反光。
退化图像I=transmission layers(背景) + reflection layers(反光)
即:I=T+R
IBCLN是一种级连的网络结构,即通过多次循环迭代优化transmission layers(背景) 和 reflection layers(反光),最终实现高质量去反光。
使用了长短期记忆单元(LSTM)实现图像信息的跨级传递,即前一优化阶段的信息向后传递,为后面优化阶段提供辅助信息。
提出了残差重建损失函数,能够闭环线性地生成人工合成反光图像。进一步指导去反光。
构造了真实世界图像数据集,包含带有密度标签的ground truth图像。能够为今后的进一步研究提供基础数据。
2.主体网络架构:
主要分为两个子网络部分: transmission-predic