深度学习——Iterative Boost Convolutional LSTM Network

本文介绍了CVPR2020的一项研究,提出了一种名为Iterative Boost Convolutional LSTM Network (IBCLN)的网络结构,用于真实世界单幅图像去反光。网络利用LSTM进行跨级信息传递,并采用残差重建损失函数指导去反光过程。通过级联的LSTM卷积网络,不断优化背景和反光层,实现图像的逐步分离。此外,文章还构建了一个真实世界图像数据集,包含密度标签的ground truth图像,用于训练和评估模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR2020原论文:Single Image Reflection Removal through Cascaded Refinement
开源代码(pytorch框架):https://github.com/JHL-HUST/IBCLN
1.主要工作:
提出了层级优化网络结构(Iterative Boost Convolutional LSTM Network ,IBCLN) 完成真实世界单幅图像去反光。

退化图像I=transmission layers(背景) + reflection layers(反光)
即:I=T+R

IBCLN是一种级连的网络结构,即通过多次循环迭代优化transmission layers(背景) 和 reflection layers(反光),最终实现高质量去反光。
使用了长短期记忆单元(LSTM)实现图像信息的跨级传递,即前一优化阶段的信息向后传递,为后面优化阶段提供辅助信息。
提出了残差重建损失函数,能够闭环线性地生成人工合成反光图像。进一步指导去反光。
构造了真实世界图像数据集,包含带有密度标签的ground truth图像。能够为今后的进一步研究提供基础数据。

2.主体网络架构:
在这里插入图片描述
主要分为两个子网络部分: transmission-predic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值